方程\(xy' + y = 3\)的通解是( )。
A: \(y = {C \over x} + 3\)
B: \(y = {3 \over x} + C\)
C: \(y = - {C \over x} - 3\)
D: \(y = {C \over x} - 3\)
A: \(y = {C \over x} + 3\)
B: \(y = {3 \over x} + C\)
C: \(y = - {C \over x} - 3\)
D: \(y = {C \over x} - 3\)
举一反三
- 方程\( y' = {x^2}{y^2} \)的通解为( )。 A: \( y = {C \over { { x^3}}} \) B: \( y = { { - 3} \over { { x^3} + C}} \) C: \( y = C{x^3} \) D: \( y = C + {x^3} \)
- 下列函数中,( )不是方程\( xy' + y - x^2 = 0 \)的解。 A: \( y = { { {x^2}} \over 3} + {1 \over x} \) B: \( y = { { {x^2}} \over 3} \) C: \( y = { { {x^2}} \over 3} + 2 \) D: \( y = { { {x^2}} \over 3} - {1 \over x} \)
- 方程\(\left( {1 - {x^2}} \right)y - xy' = 0\)的通解是( )。 A: \(y = C\sqrt {1 - {x^2}} \) B: \(y = - {1 \over 2}{x^3} + Cx\) C: \(y = {C \over {\sqrt {1 - {x^2}} }}\) D: \(y = Cx{e^{ - {1 \over 2}{x^2}}}\)
- 已知直线的一般方程\( \left\{ {\matrix{ {x - 2y - z + 4 = 0} \cr {5x + y - 2z + 8 = 0} \cr } } \right. \), 则其点向式方程为( ) A: \( { { x - 2} \over 2} = {y \over { - 3}} = { { z - 4} \over {11}} \) B: \( {x \over 5} = {y \over { - 3}} = { { z - 4} \over {11}} \) C: \( { { x - 2} \over 5} = { { y + 1} \over { - 3}} = { { z - 4} \over {11}} \) D: \( { { x - 2} \over 2} = { { y + 1} \over { - 3}} = { { z - 4} \over {11}} \)
- 下列微分方程中,( )是齐次方程。 A: \( xy' = y(\ln y - \ln x) \) B: \( xy' + {y \over x} - x = 0 \) C: \( y' + {y \over x} = {1 \over { { x^2}}} \) D: \( y - y' = 1 + xy' \)