• 2022-05-31
    微分方程y"+y"=0的通解为______.
    A: y=Ce-x
    B: y=e-x+C
    C: y=C1e-x+C2
    D: y=e-x
  • C

    内容

    • 0

      已知齐次方程$(x-1){{y}^{''}}-x{{y}^{'}}+y=0$的通解为$Y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}$,则方程$(x-1){{y}^{''}}-x{{y}^{'}}+y={{(x-1)}^{2}}$的通解是( ) A: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-({{x}^{2}}+1)$ B: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-({{x}^{3}}+1)$ C: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-{{x}^{2}}$ D: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-{{x}^{2}}+1$

    • 1

      方程xy'-ylny=0的通解为( )。 A: y=ecx B: y=x C: y=e-x D: y=ex

    • 2

      设\(z = {e^ { { y \over x}}} + {x^y} + {y^x}\),则\({z_x} = \) A: \({1 \over x}{e^ { { y \over x}}} + {x^y}\ln x + x{y^{x - 1}}\) B: \(- {y \over { { x^2}}}{e^ { { y \over x}}} + {x^y}\ln x + x{y^{x - 1}}\) C: \({e^ { { y \over x}}} + y{x^{y - 1}} + {y^x}\ln y\) D: \( - {y \over { { x^2}}}{e^ { { y \over x}}} + y{x^{y - 1}} + {y^x}\ln y\)

    • 3

      方程\(\left( {1 - {x^2}} \right)y - xy' = 0\)的通解是( )。 A: \(y = C\sqrt {1 - {x^2}} \) B: \(y = - {1 \over 2}{x^3} + Cx\) C: \(y = {C \over {\sqrt {1 - {x^2}} }}\) D: \(y = Cx{e^{ - {1 \over 2}{x^2}}}\)

    • 4

      下列不等式正确的是( ) A: \( { { {e^x} + {e^y}} \over 2} < {e^ { { {x + y} \over 2}}}\quad (x \ne y)\) B: \((x + y){e^{x + y}} < x{e^{2x}} + y{e^{2y}}\quad (x > 0,y > 0,x \ne y)\) C: \( { { {x^n} + {y^n}} \over 2} < {( { { x + y} \over 2})^n}\quad (x > 0,y > 0,x \ne y,n > 1)\) D: \(x\ln x + y\ln y < (x + y)ln { { x + y} \over 2}\quad (x > 0,y > 0,x \ne y)\)