• 2022-05-30
    假定[tex=1.571x1.0]TYvJVTKRr6FnfPb2CtQh4Q==[/tex] 的绝对值很小,对下列各式推出近似公式:[tex=7.643x1.357]xSipYsjXlVSVvCh4wecWZ2gIVREwM109RFshC37VXzU=[/tex]
  • 解设[tex=11.357x1.357]bLnUEvnN0oIXOG1Ept/j2uzQhuNmO0a90AL3LAw366Uk37KBYWa2Rt6ENQC9LzGB[/tex], 则[tex=22.5x5.786]zfNlHH5/wxzvvyXwPWAzluxFcOhAKsD4h5Pva2RN+w2FY3qVWkoZsJ9X/iyGreqlzNiFf3Z4j9/33lWQiXeuaBKePC+ucL4QO2wBvcqrm7WTdIQ4BMLFpYBwFWacFYFrsYl145s7U/9Du1g46bbFjsDlDtNgUsqzAL8I12q3+MfVPLFcWxa8TxDpWIoYQDSDIY8lbBYRA7R3a1arPti4/wCTnXv1OsLPLGhZnAfiYU1I3uWyHbgoEf2xaHDInOl9ZYUiujoivPWjXr7+Sv4QX6XGWF6h3WvZQ91VW7KzorgZWl8GdzmTpebh3GHwBGctti5hFVcYibzhksQ0WqZuFzR/KFMLcMaKeUeBUVP/oltaIGFwxI7JtBJ7AF2DyVsNrhR676Y2FnDJrGicgAM/ILVb8dsGmld+3Q5WuXarFrpWNDJVNstPvWRbaCJm8moO06s4mfREgjMNruYNErDqnQM1eeRKeb0PchQ5gERrqN9Oc1siVhHxbhIB7wCugle0YDvC4lI9pfTd7ov1/UeoGg==[/tex] \\[br][/br]于是,[tex=35.214x2.357]ex1qxrr10Hmdv1jFBioQYSInX1TOMrjkfqq9qHxhTeAOCr3rMJPjrdFvc/kWR7kISYriWFzLbUDbq8DqpE97n0lpAt9WpncYIku6liVG2V73+gQQsqvZUVknRD/93t8mugq69l0Vjl995X5qpQk5b0GxluglSxjpRj+crvTjpQIVvTUBP3jeWMkiQbF6k11kx84ICdGUqPJVIVrmoczwdU6X+v/sR4bvPxKJA5Y8u1/m475wYB4pPFU75Jwqc/Q24oxgVFtD8JKOY0w1INL/RA==[/tex]即有近似公式[p=align:center][tex=10.071x1.357]HNNTDlcyhrp88hhDAfX7e4rM+BGJ38xLUKnbBxSR58Y0o/+eno/UzPpCxssuRyC7[/tex]本题如不用求偏导数的方法,也可直接获解[tex=18.143x1.357]HNNTDlcyhrp88hhDAfX7ewqs6tiW8ITgxAmJc/g9iOQwnNddF/pal/TUXRWXC36bj9U16F7HNqT+i5rFOJ52oQ==[/tex]

    内容

    • 0

      已知实数[tex=1.571x1.0]TYvJVTKRr6FnfPb2CtQh4Q==[/tex]满足[tex=6.5x1.429]JwVv14bDv4zrciDNEPz9h7FCo2nTWmvyb2vRJc19e1A=[/tex],则[tex=4.429x1.429]M0sn/fi/Rz9ean07Tx2wJQ==[/tex],则[tex=3.286x1.214]/h9gdoEIEAzclakeCRnwjA==[/tex]的最大值为 未知类型:{'options': ['[tex=0.786x2.357]5vFBTvulXdNmGZvSKrgPgg==[/tex]', '6', '[tex=0.786x2.357]6ytsvlW2uT13H103CrsYVg==[/tex]', '4', '3'], 'type': 102}

    • 1

      假设x的绝对值为小量,推出形如[tex=7.857x1.214]FcLD982nCQNqWQCuRV/BVC4GvCuPrmn7yWgAlgfsP94=[/tex]且精确到[tex=1.0x1.214]5OngePg461PS0mYy604aDQ==[/tex]项的近似公式.应用此公式近似地求小角度的弧长.

    • 2

      设[tex=1.571x1.0]TYvJVTKRr6FnfPb2CtQh4Q==[/tex]为拓扑空间[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]中连通的两点,证明:对于任一 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的既开又闭的子集[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex],或者[tex=1.571x1.0]TYvJVTKRr6FnfPb2CtQh4Q==[/tex]都属于[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex],或者[tex=1.571x1.0]TYvJVTKRr6FnfPb2CtQh4Q==[/tex]都不属于[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex]。

    • 3

      求函数[tex=3.286x1.429]kdT+eIE7CHPynuN6CaN40g==[/tex](抛物线)隐函数的导数[tex=1.071x1.429]BUw1BPFU3fsJlAl/vt9M9w==[/tex]当x=2与y=4及当x=2与y=0时,[tex=0.786x1.357]Hq6bf3CacUy07X+VImUMaA==[/tex]等于什么?

    • 4

      估计下列近似公式的绝对误差:(2)[tex=8.643x2.5]dtQ84XL6L7zkBvSTXLksz0huqx3yrhmYoJwbAPBRzAkTVFBp0m2vhGMB2w2cbA77mds+QUn0MKHL/JTBg1T8zw==[/tex],当[tex=3.286x1.357]XTu40MccRQXE95ahJKYkR1aP2J4okK3Ig7H1ppAq8xw=[/tex]