有限群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是[tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]群, [tex=3.286x1.357]330eCk1bxaF4/3Ul6JYmxg==[/tex] 在 [tex=1.0x1.0]0KCelhZna0R9EGhYF1VZHA==[/tex] 上有群作用,且 [tex=3.5x1.357]EiHGJtwG/B2+UgTt3nbAJQ==[/tex] 则 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 在 [tex=1.0x1.0]0KCelhZna0R9EGhYF1VZHA==[/tex] 上有不动元.
举一反三
- 设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是有限群, [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]为素数, 如果[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的每个元素的阶都是[tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]的方幂, 则称[tex=0.643x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是 [tex=1.286x1.143]vikZ5IETzFUhr/XXJaCTNw==[/tex]群. 试明: [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是 [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex] -群[tex=2.643x1.357]bMRrINhuwlMbjrHDeWypomqE0sSN5MJ+eiwzTwbj5cQ=[/tex]是[tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]的一个幂.
- 设 [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex] 是素数. 证明: 如果有限群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的每一个元素的阶都是 [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]的方幂. 则 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是 [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex] 群.
- [tex=0.643x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶循环子群当且仅当 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]有[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶元.再证 :[tex=2.071x1.357]uDUdwqeJnLoclMiXU3BK6A==[/tex] 是素数 [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex] 阶群,则 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是循环群.[tex=2.071x1.357]leZ2dm1/uybUxLAV8A9gwA==[/tex] 是[tex=1.071x1.214]QNlCeTWiPvK4dPwBORP+PQ==[/tex]阶非交换群[tex=1.0x1.0]zdNN1O/FkAWt1pjWeDlxUg==[/tex]素数,则[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 必有[tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex] 阶子群.
- 设函数f(x)在[tex=3.286x1.357]64m0xE4nFlaKGIakApV0PA==[/tex]上连续,且有f(0)=0及f'(x)单调增,证明:在[tex=3.5x1.357]vgrW1/jK/GZ1TOWaPFIQWA==[/tex]上函数[tex=5.071x2.429]KmCvFjqAEA9O51+9erVGP+KtDDqVtXZQWqxj1eiTO5k=[/tex]是单调增的。
- 设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是 [tex=1.0x1.0]G+ERgoWRxeowbOaR7/sBZg==[/tex]阶群, 其中 [tex=1.286x1.0]MmizdvsV9y7oTP/uy7jNlQ==[/tex]是素数, [tex=2.286x1.071]KBpGEH+in8vrAnylQdc1GA==[/tex] 且 [tex=3.357x1.357]QE14FycwQigVlVnLcffRzA==[/tex] 证明: [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是循环群.