设f和g在区间I上连续,记F(x)=,G(x)=,则F和G
举一反三
- 设f和g在区间I上连续,记F(x)=,G(x)=,则F和G[imgsrc="ht...31302ac09416ac.png"]
- 设F(x),G(x)都是函数f(x)在区间I上的原函数,则下面( ; ; ;)不正确 A: F(x)=G(x)+lnC B: F(x)=G(x)+C C: F(x)=G(x)-C D: F(x)=G(x)+e
- 设f(x)和g(x)均为区间I内的可导函数,则在I内,下列结论正确的是() A: 若f(x)>g(x),则f'(x)>g'(x) B: 若f(x)=g(x),则f'(x)=g'(x) C: 若f'(x)>g'(x),则f(x)>g(x) D: 若f'(x)=g'(x),则f(x)=g(x)
- 设F(x),G(x)都是函数f(x)在区间I上的原函数,则下面( )不正确 A: F(x)=G(x)+lnC B: F(x)=G(x)+C C: F(x)=G(x)-C D: F(x)=G(x)+e[img=9x12]180344b77e7e83a.png[/img]
- 若函数F(x)和G(x)都是f(x)在区间I上的原函数,那么在区间I上必有( ) A: F(x)=CG(x) B: F(x)=G(x)+C C: F(x)=G(x) D: F(x)=C-G(x)