【单选题】z=e x siny+ ,则dz=()
A. e x cosydx+dy. B. (e x siny )dx+(e x cosy+ )dy. C. (e x cosy )dx+(e x cosy+ )dy. D. (e x siny )dx+(e x cosy+1)dy.
A. e x cosydx+dy. B. (e x siny )dx+(e x cosy+ )dy. C. (e x cosy )dx+(e x cosy+ )dy. D. (e x siny )dx+(e x cosy+1)dy.
举一反三
- 已知由方程siny+xey=0,确定y是x的函数,则dy/dx的值是:() A: -(e+cosy)/xe B: -e/cosy C: -e/(cosy+xe) D: -cosy/xe
- 函数\(z = {e^ { { x^2} - 2y}}\)的全微分为 A: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dx +2{e^ { { x^2} - 2y}}dy\) B: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dx - 2{e^ { { x^2} - 2y}}dy\) C: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dy+ 2{e^ { { x^2} - 2y}}dx\) D: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dy - 2{e^ { { x^2} - 2y}}dx\)
- 设函数f(x,y)连续,则∫12dx∫x2f(x,y)dy+∫12dy∫y4-yf(x,y)dx=( ). A: ∫12dx∫14-xf(x,y)dy. B: ∫12dx∫x4-xf(x,y)dy C: ∫12dx∫14-yf(x,y)dy. D: ∫12dx∫yyf(x,y)dy
- 函数\(z = {x^y}\)的全微分为 A: \(dz = y{x^{y - 1}}dy + {x^y}\ln xdx\) B: \(dz = y{x^{y - 1}}dx + {x^y}dy\) C: \(dz = y{x^{y - 1}}dx + {x^y}\ln xdy\) D: \(dz = y{x^{y - 1}}dy + {x^y}dx\)
- 交换积分次序∫21dy∫2yf(x,y)dx=∫21dx∫x1f(x,y)dy∫21dx∫x1f(x,y)dy.