A. e x cosydx+dy. B. (e x siny )dx+(e x cosy+ )dy. C. (e x cosy )dx+(e x cosy+ )dy. D. (e x siny )dx+(e x cosy+1)dy.
举一反三
- 已知由方程siny+xey=0,确定y是x的函数,则dy/dx的值是:() A: -(e+cosy)/xe B: -e/cosy C: -e/(cosy+xe) D: -cosy/xe
- 函数\(z = {e^ { { x^2} - 2y}}\)的全微分为 A: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dx +2{e^ { { x^2} - 2y}}dy\) B: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dx - 2{e^ { { x^2} - 2y}}dy\) C: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dy+ 2{e^ { { x^2} - 2y}}dx\) D: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dy - 2{e^ { { x^2} - 2y}}dx\)
- 设函数f(x,y)连续,则∫12dx∫x2f(x,y)dy+∫12dy∫y4-yf(x,y)dx=( ). A: ∫12dx∫14-xf(x,y)dy. B: ∫12dx∫x4-xf(x,y)dy C: ∫12dx∫14-yf(x,y)dy. D: ∫12dx∫yyf(x,y)dy
- 函数\(z = {x^y}\)的全微分为 A: \(dz = y{x^{y - 1}}dy + {x^y}\ln xdx\) B: \(dz = y{x^{y - 1}}dx + {x^y}dy\) C: \(dz = y{x^{y - 1}}dx + {x^y}\ln xdy\) D: \(dz = y{x^{y - 1}}dy + {x^y}dx\)
- 交换积分次序∫21dy∫2yf(x,y)dx=∫21dx∫x1f(x,y)dy∫21dx∫x1f(x,y)dy.
内容
- 0
已知方程xy-eˆ2x=siny确定隐函数y=y(x),求dy/dx
- 1
已知由方程siny+xey=0,确定y是x的函数,则dy/dx的值是:() A: -(ey+cosy)/xey B: -ey/cosy C: -ey/(cosy+xey) D: -cosy/xey
- 2
已知由方程siny+xe[sup]y[/]=0,确定y是x的函数,则dy/dx的值是:() A: -(e<sup>y</sup>+cosy)/xe<sup>y</sup> B: -e<sup>y</sup>/cosy C: -e<sup>y</sup>/(cosy+xe<sup>y</sup>) D: -cosy/xe<sup>y</sup>
- 3
设视点为坐标原点,投影平面为z=d,则点p(x,y,z)的投影为()。 A: (dx,dy,dz,z) B: (x,y,z,dz) C: (dx,dy,dz,1) D: (x,y,z,d)
- 4
函数\(z = {\left( {xy} \right)^x}\)的全微分为 A: \(dz = \left( { { {\left( {xy} \right)}^x} + \ln xy} \right)dx + x{\left( {xy} \right)^x}dy\) B: \(dz = \left( { { {\left( {xy} \right)}^x} + \ln xy} \right)dx + { { x { { \left( {xy} \right)}^x}} \over y}dy\) C: \(dz = {\left( {xy} \right)^x}\ln xydx + { { x { { \left( {xy} \right)}^x}} \over y}dy\) D: \(dz = {\left( {xy} \right)^x}\left( {1 + \ln xy} \right)dx + { { x { { \left( {xy} \right)}^x}} \over y}dy\)