• 2021-04-14
    【单选题】z=e x siny+ ,则dz=()
    A. e x cosydx+dy. B. (e x siny )dx+(e x cosy+ )dy. C. (e x cosy )dx+(e x cosy+ )dy. D. (e x siny )dx+(e x cosy+1)dy.
  • (e x siny )dx+(e x cosy+ )dy.

    内容

    • 0

      已知方程xy-eˆ2x=siny确定隐函数y=y(x),求dy/dx

    • 1

      已知由方程siny+xey=0,确定y是x的函数,则dy/dx的值是:() A: -(ey+cosy)/xey B: -ey/cosy C: -ey/(cosy+xey) D: -cosy/xey

    • 2

      已知由方程siny+xe&#91;sup&#93;y&#91;/&#93;=0,确定y是x的函数,则dy/dx的值是:() A: -(e<sup>y</sup>+cosy)/xe<sup>y</sup> B: -e<sup>y</sup>/cosy C: -e<sup>y</sup>/(cosy+xe<sup>y</sup>) D: -cosy/xe<sup>y</sup>

    • 3

      设视点为坐标原点,投影平面为z=d,则点p(x,y,z)的投影为()。 A: (dx,dy,dz,z) B: (x,y,z,dz) C: (dx,dy,dz,1) D: (x,y,z,d)

    • 4

      函数\(z = {\left( {xy} \right)^x}\)的全微分为 A: \(dz = \left( { { {\left( {xy} \right)}^x} + \ln xy} \right)dx + x{\left( {xy} \right)^x}dy\) B: \(dz = \left( { { {\left( {xy} \right)}^x} + \ln xy} \right)dx + { { x { { \left( {xy} \right)}^x}} \over y}dy\) C: \(dz = {\left( {xy} \right)^x}\ln xydx + { { x { { \left( {xy} \right)}^x}} \over y}dy\) D: \(dz = {\left( {xy} \right)^x}\left( {1 + \ln xy} \right)dx + { { x { { \left( {xy} \right)}^x}} \over y}dy\)