• 2022-05-30 问题

    设函数f(x,y)连续,则∫12dx∫x2f(x,y)dy+∫12dy∫y4-yf(x,y)dx=( ). A: ∫12dx∫14-xf(x,y)dy. B: ∫12dx∫x4-xf(x,y)dy C: ∫12dx∫14-yf(x,y)dy. D: ∫12dx∫yyf(x,y)dy

    设函数f(x,y)连续,则∫12dx∫x2f(x,y)dy+∫12dy∫y4-yf(x,y)dx=( ). A: ∫12dx∫14-xf(x,y)dy. B: ∫12dx∫x4-xf(x,y)dy C: ∫12dx∫14-yf(x,y)dy. D: ∫12dx∫yyf(x,y)dy

  • 2022-06-03 问题

    交换积分次序∫21dy∫2yf(x,y)dx=∫21dx∫x1f(x,y)dy∫21dx∫x1f(x,y)dy.

    交换积分次序∫21dy∫2yf(x,y)dx=∫21dx∫x1f(x,y)dy∫21dx∫x1f(x,y)dy.

  • 2022-06-12 问题

    ,求dy.,求dy.

    ,求dy.,求dy.

  • 2022-07-24 问题

    (2006年)设函数y=f(χ)具有二阶导数,且f′(χ)>0,f〞(χ)>0,△χ为自变量χ在点χ0处的增量,△y与dy分别为f(χ)在点χ0处对应的增量与微分,若△χ>0,则 A: 0<dy<△y. B: 0<△y<dy. C: △y<dy<0. D: dy<△y<0.

    (2006年)设函数y=f(χ)具有二阶导数,且f′(χ)>0,f〞(χ)>0,△χ为自变量χ在点χ0处的增量,△y与dy分别为f(χ)在点χ0处对应的增量与微分,若△χ>0,则 A: 0<dy<△y. B: 0<△y<dy. C: △y<dy<0. D: dy<△y<0.

  • 2022-06-03 问题

    设函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)>0,Δx为自变量x在x0处的增量,Δy与dy分别为f(x)在点x0处对应的增量与微分,若Δx>0,则______ A: 0<dy<Δy. B: 0<Δy<dy. C: Δy<dy<0. D: dy<Δy<0.

    设函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)>0,Δx为自变量x在x0处的增量,Δy与dy分别为f(x)在点x0处对应的增量与微分,若Δx>0,则______ A: 0<dy<Δy. B: 0<Δy<dy. C: Δy<dy<0. D: dy<Δy<0.

  • 2022-06-12 问题

    设y=ln(1+x²),求dy.

    设y=ln(1+x²),求dy.

  • 2021-04-14 问题

    【单选题】z=e x siny+ ,则dz=() A. e x cosydx+dy. B. (e x siny )dx+(e x cosy+ )dy. C. (e x cosy )dx+(e x cosy+ )dy. D. (e x siny )dx+(e x cosy+1)dy.

    【单选题】z=e x siny+ ,则dz=() A. e x cosydx+dy. B. (e x siny )dx+(e x cosy+ )dy. C. (e x cosy )dx+(e x cosy+ )dy. D. (e x siny )dx+(e x cosy+1)dy.

  • 2021-04-14 问题

    【单选题】求y= 的微分dy A. dy=2x dx B. dy=2x C. dy= dx D. dy=

    【单选题】求y= 的微分dy A. dy=2x dx B. dy=2x C. dy= dx D. dy=

  • 2022-05-27 问题

    已知y=x3-x, 计算在x=2处当Dx等于1时, Dy=______ ,dy=______ ;当Dx等于0.1时, Dy=______ ,dy=______ ;当Dx等于0.01时, Dy=______ ,dy=______ ;

    已知y=x3-x, 计算在x=2处当Dx等于1时, Dy=______ ,dy=______ ;当Dx等于0.1时, Dy=______ ,dy=______ ;当Dx等于0.01时, Dy=______ ,dy=______ ;

  • 2022-06-09 问题

    计算I=∫(-2,-1)(3,0)(x4+4xy3)dx+(6x2y2-5y4)dy.

    计算I=∫(-2,-1)(3,0)(x4+4xy3)dx+(6x2y2-5y4)dy.

  • 1 2 3 4 5 6 7 8 9 10