向列表vec={2, 5, 7, 3} 的尾部追加元素0 的函数是:[vec,0]
举一反三
- 提取列表 vec = {2, 3, 7, 8, 1, 4} 第三个元素的语句是
- 已知向量\(\vec {a},\vec {b}的夹角\theta=\frac{3\pi}{4},且|\vec{a}|=\sqrt{2},|\vec {b}|=\sqrt{3},求|\vec{a}-\vec{b}|=\)
- 函数 $u=xy+yz+zx$ 在点 $P(1,-1,2)$ 处的梯度 $\mathrm{grad}u|_p=$ . A: $-\vec{i}-3\vec{j}$ ; B: $-\vec{i}+3\vec{j}$ ; C: $\vec{i}-3\vec{j}$ ; D: $\vec{i}+3\vec{j}$ .
- 考察球面$S:\ {{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{a}^{2}}$,若规定内侧为正向,在其上任意一点的单位正法向量为( ). A: $\frac{x\vec{i}+y\vec{j}+z\vec{k}}{a}$ B: $-\frac{x\vec{i}+y\vec{j}+z\vec{k}}{a}$ C: $x\vec{i}+y\vec{j}+z\vec{k}$ D: $-\left( x\vec{i}+y\vec{j}+z\vec{k} \right)$
- 如果曲面$S$由参数方程给出:$x=u+v,\ y=uv,\ z=u-v$,则在任意一点的单位法向量为( ) A: $\pm \frac{(-u-v)\vec{i}+2\vec{j}+(u-v)\vec{k}}{\sqrt{2{{u}^{2}}+2{{v}^{2}}+4}}$ B: $\pm\frac{(u+v)\vec{i}+2\vec{j}+(-u-v)\vec{k}}{\sqrt{2{{u}^{2}}+2{{v}^{2}}+4}}$ C: $\pm \left[ (-u-v)\vec{i}+2\vec{j}+(u+v)\vec{k} \right]$ D: $\pm \left[ (u+v)\vec{i}+2\vec{j}+(-u-v)\vec{k} \right]$