A. N1=3 , N2=4 B. N1=5 , N2=4 C. N1=4 , N2=4 D. N1=5 , N2=5
举一反三
- 设n=n1n2,(n1,n2)=1,n1≥1,n2≥1,则φ(n)=φ(n1)φ(n2).若n=n1n2,n1≥1,n2≥1,则φ(n)=φ(n1)φ(n2)?
- 两个有限长序列x1(n)和x2(n),长度分别为N1和N2,若x1(n)与x2(n)线性卷积后的结果序列为x(n),则x(n)的长度为:() A: N=N1+N2-1 B: N=max(N1,N2) C: N=N1 D: N=N2
- 下面N×N的笛卡尔积的子集中,哪些可以构成函数? A: {(n1,n2) | n1,n2∈N and n1+n2 <10} B: {(n1,n2) | n1,n2∈N and n2 = n1^2} C: {(n1,n2) | n1,n2∈N and n1 = n2^2} D: {(n1,n2) | n1,n2∈N and n2为小于n1的素数个数}
- 已知一个序列x(n)的z变换X(z)定义成[img=140x46]17e0bb90d234a43.jpg[/img]已知某数字系统的[img=191x22]17e0bb91a52fc70.jpg[/img],则单位脉冲响应h(n)= A: h(n)={1, 2, 0, 2, 1} , 0≤n≤4 B: h(n)={1, 2, 2, 1} , 0≤n≤3 C: h(n)={1, 2, 0, 2, 1} , 1≤n≤4 D: h(n)={1, 2, 2, 1} , 1≤n≤4
- 已知一个序列x(n)的z变换X(z)定义成[img=140x46]17e4422545608da.jpg[/img]已知某数字系统的[img=191x22]17e442257956284.jpg[/img],则单位脉冲响应h(n)= A: h(n)={1, 2, 0, 2, 1} , 0≤n≤4 B: h(n)={1, 2, 2, 1} , 0≤n≤3 C: h(n)={1, 2, 0, 2, 1} , 1≤n≤4 D: h(n)={1, 2, 2, 1} , 1≤n≤4
内容
- 0
有六组量子数: (1) n=3,l=1,m=-1;(2) n=3,l=0,m=0;(3) n=2,l=2,m=-1;(4) n=2,l=1,m=0;(5) n=2,l=0,m=-1;(6) n=2,l=3,m=2 其中正确的是( )。 A: (1)(3)(5) B: (2)(4)(6) C: (1)(2)(4) D: (1)(2)(3)
- 1
两个有限长序列x1(n)和x2(n),长度分别为N1和N2,若x1(n)与x2(n)循环卷积后的结果序列长度为M,线性卷积的结果序列长度为N,则M=(),N=() A: M=max[N1,N2]; B: N=N1+N2-1 C: N=N1 D: N=N2
- 2
已知x(n)={1, 2, 3},y(n)={1, 2, 1},则x(n)*y(n)=________。(下划线表示n=0) A: {1, 4, 8, 8, 3} B: {1, 4, 8, 8, 3} C: {1, 4, 8, 8, 3} D: {1, 4, 8, 8, 3}
- 3
设序列 x(n)= {1 , 3 , 2 , 1 ; n=0,1,2,3 } ,另一序列 h (n) = {1 , 2 , 1 , 2 ; n=0,1,2,3} , ( 1 )求两序列的线性卷积 y L (n) ; ( 4 分) ( 2 )求两序列的 6 点循环卷积 y C (n) 。 ( 4 分) ( 3 )说明循环卷积能代替线性卷积的条件。( 2 分)
- 4
【单选题】已知数列{a n }中,a 1 =1,当n≥2时,a n =2a n - 1 +1,依次计算a 2 ,a 3 ,a 4 后,猜想a n 的一个表达式是()(5.0分) A. n 2 ﹣1 B. (n﹣1) 2 +1 C. 2 n ﹣1 D. 2 n ﹣ 1 +1