智慧职教: 2.3.2 设f(x) 可导,F(x)=f(x)(1+|sinx|),则f(0)=0是F(x)在x=0处可导的( ).
举一反三
- 设f(x)可导,且F(x)=f(x)(1+|sinx|)在x=0处可导,则______. A: f(0)=0 B: f"(0)=0 C: f(0)=f"(0) D: f(0)=-f"(0)
- 设f(x)可导,且F(x)=f(x)(1+|sinx|)在x=0处可导,则( ). A: f(0)=0 B: f"(0)=0 C: f(0)=f"(0) D: f(0)=一f"(0)
- 设f(x)可导,F(x)=f(x)(1+|x|),若要使F(x)在x=0处可导,则必有______. A: f(0)=0 B: f(0)=1 C: f"(0)=0 D: f"(0)=1
- 设f(x)在x=n处可导,则|f(x)|在x=a处不可导的充要条件是 ( ). A: f(A) =0,_f'(A) =0. B: f'(A) =0,f C: f(A) ≠0,f(A D: f(A) ≠0,f'(A
- 设函数f(x)在x=0处可导,且f(0)=0,f′(0)=2,则=()。设函数f(x)在x=0处可导,且f(0)=0,f′(0)=2,则=()。