与向量`a_{1}=(1,1,1)^{T}`,`a_{2}=(1,-2,1)^{T}`正交的向量为
举一反三
- 将向量组`a_{1}=(1,1)^{T}`,`a_{2}=(1,-2)^{T}`施密特正交化为向量组
- 若向量α=(1,-2,1)与β=(2, 3,t)正交,则t=
- 作为线性空间$R^{3}$上的变换,下列$\cal A$不是线性变换的是( )。 A: $\cal {A}(a_{1},a_{2},a_{3})=(2a_{1}-a_{2}+a_{3},a_{2}-a_{3},2a_{1}+a_{3})$ B: ${\cal A}(a_{1},a_{2},a_{3})=(a_{1},0,a_{2})$; C: ${\cal A}(a_{1},a_{2},a_{3})=(a_{1},2a_{2},3a_{3})$ D: ${\cal A}(a_{1},a_{2},a_{3})=(a_{1}^{2},a_{2}-a_{3},a_{3}^{2})$
- 若向量03b1=(1,-2,1)与03b2=(2, 3,t)正交,则t=
- 下列多项式在有理数域上不可约的是( )。 A: $(x-a_{1})(x-a_{2})...(x-a_{n})-1$,其中$a_{1},a_{2},...,a_{n}$是两两互异的整数; B: $(x-a_{1})(x-a_{2})...(x-a_{n})+1$,其中$a_{1},a_{2},...,a_{n}$是两两互异的整数; C: $(x-a_{1})^{2}(x-a_{2})^{2}...(x-a_{n})^{2}+1$,其中$a_{1},a_{2},...,a_{n}$是两两互异的整数; D: $(x-a_{1})^{2}(x-a_{2})^{2}...(x-a_{n})^{2}-1$,其中$a_{1},a_{2},...,a_{n}$是两两互异的整数.