与向量`a_{1}=(1,1,1)^{T}`,`a_{2}=(1,-2,1)^{T}`正交的向量为
`(-1,0,1)^{T}`
举一反三
- 将向量组`a_{1}=(1,1)^{T}`,`a_{2}=(1,-2)^{T}`施密特正交化为向量组
- 若向量α=(1,-2,1)与β=(2, 3,t)正交,则t=
- 作为线性空间$R^{3}$上的变换,下列$\cal A$不是线性变换的是( )。 A: $\cal {A}(a_{1},a_{2},a_{3})=(2a_{1}-a_{2}+a_{3},a_{2}-a_{3},2a_{1}+a_{3})$ B: ${\cal A}(a_{1},a_{2},a_{3})=(a_{1},0,a_{2})$; C: ${\cal A}(a_{1},a_{2},a_{3})=(a_{1},2a_{2},3a_{3})$ D: ${\cal A}(a_{1},a_{2},a_{3})=(a_{1}^{2},a_{2}-a_{3},a_{3}^{2})$
- 若向量03b1=(1,-2,1)与03b2=(2, 3,t)正交,则t=
- 下列多项式在有理数域上不可约的是( )。 A: $(x-a_{1})(x-a_{2})...(x-a_{n})-1$,其中$a_{1},a_{2},...,a_{n}$是两两互异的整数; B: $(x-a_{1})(x-a_{2})...(x-a_{n})+1$,其中$a_{1},a_{2},...,a_{n}$是两两互异的整数; C: $(x-a_{1})^{2}(x-a_{2})^{2}...(x-a_{n})^{2}+1$,其中$a_{1},a_{2},...,a_{n}$是两两互异的整数; D: $(x-a_{1})^{2}(x-a_{2})^{2}...(x-a_{n})^{2}-1$,其中$a_{1},a_{2},...,a_{n}$是两两互异的整数.
内容
- 0
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T,试问:当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)等价?当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)不等价?
- 1
在R3中与向量α1=(1,1,1)T,α2=(1,2,1)T,都正交的单位向量是() A: 1/(-1,0,1)T B: (1,0,1)T C: (-1,0,1)T D: (1,0,-1)T
- 2
在R3中与向量α1=(1,1,1)T,α2=(1,2,1)T,都正交的单位向量是()
- 3
设向量α1=(1,-1,2)T与α2=(4,0,k)T正交,则数k=( ) A: -2 B: 2 C: 1 D: -1
- 4
.若向量α=(1,-2,1)与β=(2,3,t)正交,则t=() A: -2 B: 0 C: 2 D: 4