图示单元体,设 [tex=4.357x1.357]RN65B74R79/nR4Lpmaagac63ben7e2Wb+53nRXx0bLFlPDE/e66my/f+rFpqRFZ6npIu/ceTsMQZ6lbKPSsE8g==[/tex] 。 试根据应力圆的几何关系,写出图 [tex=1.357x1.357]9AF2UeeHBFR9WhJN3K2/3w==[/tex] 所示单元 体任一斜截面 [tex=2.286x1.071]RAhTJ6qPVJlhpMgdZQTC2w==[/tex] 上正应力及切应力的计算公式。[img=279x283]17a760f7d1dfd8a.png[/img]
举一反三
- 图示单元体, 设 [tex=4.357x1.357]RN65B74R79/nR4Lpmaagac63ben7e2Wb+53nRXx0bLFlPDE/e66my/f+rFpqRFZ6npIu/ceTsMQZ6lbKPSsE8g==[/tex] 。试根据应力圆的几何关系, 写出习题 图 (a) 所示单元 体任一斜截面 m-n上正应力及切应力的计算公式。[img=248x258]17e14fc8765c852.png[/img]
- 已知应力状态如图[tex=1.357x1.357]9AF2UeeHBFR9WhJN3K2/3w==[/tex]、[tex=1.214x1.357]1UXtoYxygKGhdbzkW8pekQ==[/tex]、[tex=1.214x1.357]0lZ98ZFNztZzjzmrnYG3Pg==[/tex]所示,试据应力圆的几何关系求指定斜截面[tex=1.0x1.0]gYJhypvKme6HbnVYnWCsSw==[/tex]上的应力,并画在单元体上。[img=326x306]179ec39e2b4993c.png[/img]
- 已知应力状态如图[tex=1.357x1.357]9AF2UeeHBFR9WhJN3K2/3w==[/tex]、[tex=1.214x1.357]1UXtoYxygKGhdbzkW8pekQ==[/tex]、[tex=1.214x1.357]0lZ98ZFNztZzjzmrnYG3Pg==[/tex]所示,试据应力圆的几何关系求指定斜截面[tex=1.0x1.0]gYJhypvKme6HbnVYnWCsSw==[/tex]上的应力,并画在单元体上。[img=273x288]179ec32f8b846a1.png[/img]
- 假设“☆”是一种新的运算,若3☆2=3×4,6☆3=6×7×8,x☆4=840(x>0),那么x等于: A: 2 B: 3 C: 4 D: 5 E: 6 F: 7 G: 8 H: 9
- 曲拐受力如图 [tex=1.357x1.357]9AF2UeeHBFR9WhJN3K2/3w==[/tex] 所示,其圆杆部分的直径 [tex=4.0x1.0]JnXHBz6zj9U3cJi5lyAaxFB+gIPtJEvGRzMfeB4Cb0c=[/tex] 。试画出表示 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 点处应力状态的单元体,并求其主应力及最大切应力。[img=220x201]17a79edb338e6b2.png[/img]