设 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 与 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 没有公共的特征值, 且 [tex=2.0x1.214]IxCoL22FJ5cVcqfD+PXADQ==[/tex] 均可对 角化, 又 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 为 [tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 矩阵, 求证: [tex=6.929x2.786]EUhSDWkRR0OTJdcdLCM9WknOE6HH0Li8KIsDT3JyL1u5q0DsOG1ql+z7N0MuRWEBxVtV7/9Dtk6q0zgQyzq5rw==[/tex] 也可对角化.
举一反三
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 阶复矩阵, [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 为 [tex=2.714x1.071]/nWgWZWXmeNCPcwAggrwNg==[/tex] 阶复矩阵, 又 [tex=3.929x1.357]2khaYs0xrkcqnr1Fn6Uphl4GgrtWQrBlfDOh36tYhlk=[/tex], 求证: [tex=1.571x1.0]JLMbVw4e37VvhkU494+8Ew==[/tex] 可对角化的充要条件是 [tex=1.571x1.0]tkL6v6/VBWg422Q3lZWOGA==[/tex] 可对角化.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 阶矩阵, [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵, 求分块对角阵 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 的伴随矩阵:[tex=7.0x2.786]ovHWduPws52YVAJ/g1Zko9wu/7uar9vx61Hguiymvg2GtFhkLVDeFiqS5K5JvzTl1tHam2La1Osp8tAd/1Zi5Bpl+hf9zrTltWzQY4lSbSI=[/tex]
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵, 若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 可对角化, 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的伴随 [tex=1.143x1.071]DFelGZAPNOqMgdbfKVoEHA==[/tex] 也可对角化且 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 和 [tex=1.143x1.071]DFelGZAPNOqMgdbfKVoEHA==[/tex] 可同时对角化.
- 设[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]满足[tex=2.714x1.214]rPRBSosCEth94R4jBBpQCQ==[/tex],则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值为( )。 未知类型:{'options': ['0', '1', '[tex=1.286x1.143]AcbURnSUksMF5caOSz5CtQ==[/tex]', '0或1'], 'type': 102}
- 设 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶复矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 可对角化, 证明: 矩阵 [tex=5.786x2.929]jcCMHflCR8OS9TosV6N5vDGVIWpCg76piMmnyFcYvJ30v2dnDBcZT+CtEF0LPwSO5n/9G7bH/EVw4tnsFghmVnp005U4fOKa2fdYOgjElIc=[/tex] 也可对角化.