下列[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级实矩阵是否可对角化? 如果可对角化,求出一个可逆矩阵[tex=0.643x1.0]WUJ/JHItsc3Bqx1WYNJcrg==[/tex],使得[tex=3.143x1.214]W4jiGACeVytyGqwMmeXGeQ==[/tex]为对角矩阵.(1)元素全为1的矩阵[tex=0.571x1.0]qmbwF4Pp2sLBvOFTeKQ/mA==[/tex];(2)[tex=4.286x1.143]D///ZYR2Cm4aXYO/0aq0cg==[/tex],其中[tex=5.357x1.214]uj7/feOSZWKk4PNG9ZOL8BTpTkVzI44MYzBVdh48LX4=[/tex]
举一反三
- 元素全为1的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级矩阵[tex=0.571x1.0]qmbwF4Pp2sLBvOFTeKQ/mA==[/tex]看成有理数域上的矩阵是否可对角化?如果[tex=0.571x1.0]qmbwF4Pp2sLBvOFTeKQ/mA==[/tex]可对角化,求出有理数域上一个可逆矩阵[tex=0.643x1.0]Ft8KOBgb78fnKY0jEt4Rsg==[/tex],使[tex=3.143x1.214]c/2XwL5aczU9PTgs0l7Ddw==[/tex]为对角矩阵。
- 矩阵[tex=9.357x3.643]sSXBpxJWudVpH1R35o4LnBsKNP7n296skmEMX6wPexSqAk5YhwlFXa03Dre+pX8V61ZSL+8sINfKXDDEj8Afb/mx6pQeo0KNkVIblkRH+HBo5pUOqp57zrRseUam76A+[/tex]是否对角化? 若可对角化,试求可逆矩阵 [tex=0.929x1.214]4M4JO+cg8PL6vWL6afoCdg==[/tex] 使 [tex=3.143x1.214]W4jiGACeVytyGqwMmeXGeQ==[/tex]为对角阵。
- 矩阵[tex=10.286x3.929]sSXBpxJWudVpH1R35o4LnEMXk5i9QhB3tTNiFTwA+DgFlRelsCM/1nbQWvuxaEJqNOnlBjx4kqU45V8EZiDmS8KjUSHRfdlQJNBgbYcYAd8WTYE55EW91DLLbbraak+b[/tex]是否对角化? 若可对角化,试求可逆矩阵 [tex=0.929x1.214]4M4JO+cg8PL6vWL6afoCdg==[/tex] 使 [tex=3.143x1.214]W4jiGACeVytyGqwMmeXGeQ==[/tex]为对角阵。
- 矩阵[tex=6.786x2.786]lRsc+7xS9mVs48x3DLiOg2asEhVTfp50N5p5QSXNLqmieFRXSBTqqJhWuRQsNSjt4wIkX2rw/c/q57ZeTyN63g==[/tex]是否对角化? 若可对角化,试求可逆矩阵 [tex=0.929x1.214]4M4JO+cg8PL6vWL6afoCdg==[/tex] 使 [tex=3.143x1.214]W4jiGACeVytyGqwMmeXGeQ==[/tex]为对角阵。
- 判断矩阵[tex=8.571x3.643]3BT1BgBZQ5uJXxD5dg+w20mLhB45QXWyHS6VGL2apX1zTTISkUjmaktE8eNLNEnljjvZQhwmVi2lcGcOvwmvPE8JZDLKGKLxqdg65jfk8rY0YjWuGADoBNIpNrRtgT49[/tex]是否对角化? 若对角化,试求出可逆矩阵 [tex=0.929x1.214]4M4JO+cg8PL6vWL6afoCdg==[/tex] 使[tex=3.143x1.214]W4jiGACeVytyGqwMmeXGeQ==[/tex] 为对角阵。