设[tex=1.5x1.357]0pSODRH8iaXAUY0wkVyx8g==[/tex]为内积空间[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]中的内积,证明[tex=5.571x1.571]Zxtiz7MV0Vv833MAMdzwfsfIHfag2FG+kVihHlGIpXY=[/tex]为[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]中的范数。
举一反三
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 以概率 1 取值为 0,而 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是任意的随机变量,证明 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立.
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立,且服从参数为 1 的指数分布. 记 [tex=13.5x1.357]ZrmgIX329+lIMwj+0JP7oX4KmceUiv4NOTdLGvSfjGFY26aIR9qNFK9EJaP3gu/x[/tex] 求[tex=3.857x1.357]t0PsS3YAPSnhTBV9LUFwGQ==[/tex]
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立, 且 [tex=13.643x1.357]jm7DamB4ePXspD67wOMKkwD0RKaR1wxVUCPkd1bPK/g=[/tex], 求[tex=5.571x1.571]9xCNo57tZe6bP2mi5uYmuuUc1DHlEP+EtlyCvnDJVxs=[/tex]
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 在区间 [tex=2.286x1.357]IVQHL7gpVvGMeTU2JgKtIg==[/tex] 上服从均匀分布,在 [tex=7.214x1.357]V+xkADBZ+6KY2QE3eRSKFA==[/tex] 的条件下,随机变量 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 在区间 [tex=2.357x1.357]MXPQWNi+zHHCEzuZBSyPtw==[/tex] 上服从均匀分布, 求:(1)随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的联合密度函数;(2)[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的边缘密度函数;(3)概率 [tex=5.5x1.357]pcLS3GdwGHaNP3Uhki575Q==[/tex]
- 设 [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 是赋范数性空间 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]到赋范线性空间 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的线性算子,若 [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 的零空间是闭集, [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 是否一定 有界?