举一反三
- 设[tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 为[tex=3.214x1.0]BJ0NiZYuvBIGjRY73gw/8w==[/tex] 空间[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]上正常算子 [tex=4.286x1.214]AFyvUm8khRRS3mDqf83Wrw==[/tex] 为 [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 的笛卡尔分解,证明 : [tex=7.143x1.571]Iu3TFh/FXBXGRUb99yhy9zrEGn7UXZuV7FzmZaO5ZHdV5SDBGAjw4atLmtxxL+vP[/tex]
- 设 [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 为[tex=3.214x1.0]BJ0NiZYuvBIGjRY73gw/8w==[/tex] 空间 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 上正常算子 为[tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 的笛卡尔分解,证明 :[tex=5.143x1.571]x9wKpvU10E+T/NP1C/Wc1BaKWbTkvexJKc3Q///yoF6yLKSWLfRztyUQP/HoY+WN[/tex].
- 树 [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 如图 16.18 所示. 回答以下问题.(1) [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 是几叉树?(2) [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex]的树高为几?(3) [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 有几个内点?(4) [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex]有几个分支点?[img=273x205]17926ce3f0ebfd1.png[/img]
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 以概率 1 取值为 0,而 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是任意的随机变量,证明 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立.
- 假设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]在圆域[tex=4.857x1.429]PJNRL2Lo6ZG5x7bHjsvQ7ByW7TRqnaqRUgyFAP96SLM=[/tex]上服从联合均匀分布.(1) 求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]的相关系数[tex=0.857x1.0]OD3VmuyZiq/0isb82QS4WA==[/tex](2) 问[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]是否独立?
内容
- 0
假设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 在圆域 [tex=4.857x1.429]PJNRL2Lo6ZG5x7bHjsvQ7ByW7TRqnaqRUgyFAP96SLM=[/tex] 上服从二维均匀分布。(1)求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的相关系数 [tex=1.571x1.0]7wwDFuycAIG1Sh4qLOA3bg==[/tex];(2)问 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是否独立?
- 1
2. 根树 [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex]如图 16.11 所示.(1) [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 是几叉树? 要将 [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 变成正则树至少要加几个顶点, 几条边?(2) [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 有几个内点? 分别是哪些顶点?(3) [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 有几个分支点? 分别是哪些顶点?(4) [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 的树高 [tex=2.0x1.357]MI3pgNi00x0DZTBv/RObrQ==[/tex] 为几?[img=261x241]179218f889369a1.png[/img]
- 2
设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立,且服从参数为 1 的指数分布. 记 [tex=13.5x1.357]ZrmgIX329+lIMwj+0JP7oX4KmceUiv4NOTdLGvSfjGFY26aIR9qNFK9EJaP3gu/x[/tex] 求[tex=3.857x1.357]t0PsS3YAPSnhTBV9LUFwGQ==[/tex]
- 3
设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 在区间 [tex=2.286x1.357]IVQHL7gpVvGMeTU2JgKtIg==[/tex] 上服从均匀分布,在 [tex=7.214x1.357]V+xkADBZ+6KY2QE3eRSKFA==[/tex] 的条件下,随机变量 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 在区间 [tex=2.357x1.357]MXPQWNi+zHHCEzuZBSyPtw==[/tex] 上服从均匀分布, 求:(1)随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的联合密度函数;(2)[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的边缘密度函数;(3)概率 [tex=5.5x1.357]pcLS3GdwGHaNP3Uhki575Q==[/tex]
- 4
设[tex=1.714x1.214]9ikpIeQlx6jFxVpULl5CQQ==[/tex]是赋范线性空间,[tex=3.286x1.0]AgvT20i3WTv9ApZQh3jIgB1L6P+XUcE0vpU6V3rhj2A=[/tex]为闭线性算子, 试证明(1)设[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]为[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]中的紧集,则像[tex=1.357x1.0]hVMRB0EuEKoyAlFH69fTgA==[/tex]是[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]中的闭集