• 2022-06-01
    设 [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 是赋范数性空间 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]到赋范线性空间 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的线性算子,若 [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 的零空间是闭集, [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 是否一定 有界?
  • 【[b]解题过程[/b]】令 [tex=5.714x1.357]Wk+rpsolrCZnxwTJrKkYaYdHkFk4/7HlQcxZBBgWfWA=[/tex],其中 [tex=2.857x1.357]1Ypn1kiTLGIvICcxm8n0AzXxb44xWy2NCpveWA74vzQ=[/tex] 上多项式函数全体,视为 [tex=2.714x1.357]cMf/ATOuKTCQQx3cKnaH4Q==[/tex] 的子空间. [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex]是 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 到 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的微分算子. 若 [tex=2.357x1.214]WG34d9Q4I9vO2IFl9AOCHg==[/tex], 则[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 是常值函数 . 显然常值函数全体是闭子集,但 [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex]是非有界的.

    举一反三

    内容

    • 0

      假设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 在圆域 [tex=4.857x1.429]PJNRL2Lo6ZG5x7bHjsvQ7ByW7TRqnaqRUgyFAP96SLM=[/tex] 上服从二维均匀分布。(1)求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的相关系数 [tex=1.571x1.0]7wwDFuycAIG1Sh4qLOA3bg==[/tex];(2)问 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是否独立?

    • 1

      2. 根树 [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex]如图 16.11 所示.(1) [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 是几叉树? 要将 [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 变成正则树至少要加几个顶点, 几条边?(2) [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 有几个内点? 分别是哪些顶点?(3) [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 有几个分支点? 分别是哪些顶点?(4) [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 的树高 [tex=2.0x1.357]MI3pgNi00x0DZTBv/RObrQ==[/tex] 为几?[img=261x241]179218f889369a1.png[/img]

    • 2

      设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立,且服从参数为 1 的指数分布. 记 [tex=13.5x1.357]ZrmgIX329+lIMwj+0JP7oX4KmceUiv4NOTdLGvSfjGFY26aIR9qNFK9EJaP3gu/x[/tex] 求[tex=3.857x1.357]t0PsS3YAPSnhTBV9LUFwGQ==[/tex]

    • 3

      设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 在区间 [tex=2.286x1.357]IVQHL7gpVvGMeTU2JgKtIg==[/tex] 上服从均匀分布,在 [tex=7.214x1.357]V+xkADBZ+6KY2QE3eRSKFA==[/tex] 的条件下,随机变量 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 在区间 [tex=2.357x1.357]MXPQWNi+zHHCEzuZBSyPtw==[/tex] 上服从均匀分布, 求:(1)随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的联合密度函数;(2)[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的边缘密度函数;(3)概率 [tex=5.5x1.357]pcLS3GdwGHaNP3Uhki575Q==[/tex]

    • 4

      设[tex=1.714x1.214]9ikpIeQlx6jFxVpULl5CQQ==[/tex]是赋范线性空间,[tex=3.286x1.0]AgvT20i3WTv9ApZQh3jIgB1L6P+XUcE0vpU6V3rhj2A=[/tex]为闭线性算子, 试证明(1)设[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]为[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]中的紧集,则像[tex=1.357x1.0]hVMRB0EuEKoyAlFH69fTgA==[/tex]是[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]中的闭集