设方程[tex=7.214x1.143]SO7el9JDY6RzUyj6VxXY4MPycAW3JFAQCbn1Zc1wvpY=[/tex]的迭代法为[tex=7.286x2.357]n/u7mQTKvtqTdeAFi/xH7TaWZTQwnw3JqQdPMYct5zk=[/tex],说明对于任意初值此迭代收敛, 并估计要求具有10位有效数字时大约要迭代多少步.
举一反三
- 为求方程[tex=6.643x1.286]tIZKz9VGn2Oo+3+UDMlb3IsRMJJjSQdvCtK6GYLx5e8=[/tex]在[tex=3.571x1.286]cDl5/EtxfITwaC+3Zn+jYg==[/tex]附近的一个根,设将方程改写成下列等价形式,并建立相应的迭代公式。(1)[tex=4.714x2.0]x7zKMmssJ67DOXj5OxkpOvhMpDEVoslTwOoDn2G3fYQ=[/tex],迭代公式[tex=6.214x2.286]gpMw5ST1xvly3vVoZadqm1lvEWloHzXlGZyvQ4o7rgp7Nvn/jv5R6w4iWI/dl3D0[/tex];(2)[tex=4.929x1.286]i6uDA4898VrRK73fogNBVh9U6Dhhwu+aP7CSz7CouIM=[/tex],迭代公式[tex=7.429x1.571]tHiCGyTMA+k0raDV+m9PC7ksc6sJsuOzNbmjOQhjYrNz4vJ4uzBHQAYAXADPrKsQBMDC1a+c1AuYkZYpQKkz5Q==[/tex];(3)[tex=4.714x2.0]MGzQ22aEqDpKsUDegzUdtpkwapu4tuzHNXa2C72oEy8=[/tex],迭代公式[tex=7.0x2.214]2f0fZcitv6XcvzH28Y2+VKximwIELs+qcPX8too0IDcDWG3Tn5Y+rTke3tNZQFH6[/tex]。试分析每种迭代公式的收敛性,并选取一种公式求出具有四位有效数字的近似根。
- 用简单迭代法求下列方程的根,当满足 [tex=9.714x1.5]br9mJdlToWEg/qNFvnGMo1eyHm2XZvRNjIWcAtf8ueYJLEZI9AvHmjXkJ2zhEhorVSSPYvd0E3lQ5kDzjmVH4GVjuq+pjmqouREo7QJL2/g=[/tex]时结束迭代,并说明迭代收敛的理由:[br][/br][tex=6.286x1.143]WFt418DiXjBBVYUAaYtCgLCFD5OfWGWjcXtwT7yPxak=[/tex]
- 用简单迭代法求下列方程的根,当满足 [tex=9.714x1.5]br9mJdlToWEg/qNFvnGMo1eyHm2XZvRNjIWcAtf8ueYJLEZI9AvHmjXkJ2zhEhorVSSPYvd0E3lQ5kDzjmVH4GVjuq+pjmqouREo7QJL2/g=[/tex]时结束迭代,并说明迭代收敛的理由:[tex=7.071x1.357]aljb+Ks+r/3ukA91ahwNeg==[/tex] (只求最小的正根)
- 用迭代法求解下述线性方程组:[tex=10.786x3.929]7EJHVCtO2IWq3KpdB+jQsnkb7DW+/SpRiPSBe5KwiaaxWfR5Lfq+Hi077Ucj0weF+ETXx9iu3nod7pl1UtUTry1YLTMg4D3Q/7VqU783aaYzA01CIa3Go0XgfmE1s8OUKLm/vzBGUf65MosN7Vb/fPAtPy5Uvea+4g7U8ByYs+7lD0v8XexZLXJbRj2PcLWS[/tex](1)分别写出雅可比迭代、GS迭代、SOR迭代([tex=3.214x1.0]MFgkChukcohooa6iaLcR2w==[/tex]) 的迭代格式;(2) 判断上述三个迭代格式的收敘性, 并说明理由;(3) 用收敛的迭代格式分别计算方程组的解,要求满足[tex=11.786x2.357]3kRqjnXEHaOzBR9r8vWb96A+vNOgwLg56qvrp/8CcyYDvY5AywTfd/xCUxv2vjti2Sjf944sZSG71Eobmf77uMVDntSSsxV01gIHTc+vDUM=[/tex].
- 试证明,对于任意初值[tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex],迭代格式[tex=5.286x1.0]3zkEc6bHHUitIisRjTLq7hsNyIZaak15t4yiGzzMD0E=[/tex]都收敛于方程 [tex=3.643x0.786]7KMngtkBBNoD+e8ep4YrtA==[/tex]的同一实根.