设连续型随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为[p=align:center][tex=10.929x2.429]VWUe0bBMIK3tOQEF5B9TNpZbXmKtnoLoxnD4jiZ43AIl0t1OZ8Juyt7D4udUC8fRYuOZAiUldgrD422opLcD4w==[/tex],其中 [tex=3.357x1.214]PBpRj+AxJCNaNfB1cp9KKQ==[/tex],又已知 [tex=4.929x1.357]mBR2FgRAR+4+6zVB9w+7CQ==[/tex],求 [tex=1.5x1.214]IopA4RxAkjSnrBW9AC0JjA==[/tex] 的值.
举一反三
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率分布为[p=align:center][tex=14.286x2.429]LqMix4V9A4fmrAAGdGplEgVNBX094br2Pnf2L2myM+cWK767tI2fahgQ6wtvht5XfQM6QrdLn57Jcwa4c3svjw==[/tex]则 [tex=1.357x0.786]/hFLM7h8J4g2u+aatyQL+A==[/tex][input=type:blank,size:4][/input].
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为[p=align:center][tex=9.714x2.929]w70lG1NUs5ZRhKHaXMaifahNYA2l55OVx/YI5vl5IU7ZIMdXP3FXaYT+sPY6ne6V6Nnoe1RAfQSwDu2/xNwKpTqKTw6Dzj8Epv3swMqvSgfaVD2FTfsR+bqlJizyVjJi[/tex],(1)求 [tex=2.714x1.0]arFjNvf7sJBmfAMro9/zcQ==[/tex] 的数学期望;(2)求 [tex=3.357x1.214]Mh2mljWfZx1y+q6C1rmk0A==[/tex] 的数学期望.
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为[p=align:center][tex=13.857x2.429]rPv0VD0uSHilk9kRx82SkKUsT9+CME96kfKrw4zwSnHuFGjN3hym/wz5K8FDPYwaNx2Kp1jMoP2S0OqdxkwAyg==[/tex],求 [tex=2.357x1.357]y0JP40XwxAEl4j7GgRfsFw==[/tex].
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 以概率 1 取值为 0,而 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是任意的随机变量,证明 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立.
- 设连续型随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为[tex=12.857x2.429]U8EmrNdvLYP7VnO9GCL0WKC9lw90KXXShABMLxBUPz+883V6ZlmOKYenQdRp5qeYe2K4EeF5ruQqhPOElrvMWA==[/tex],求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的数学期望与方差.