试求下列集合 [tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex] 的基数设 [tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex] 是公差为自然数的等差自然数子列的全体.
举一反三
- 点集[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]为闭集当且仅当[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]中的收敛点列的极限仍然属于[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]
- 设[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]是特征为素数[tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]的一个域. 证明:[p=align:center][tex=10.357x1.357]KeyxddHCSfEmOM8hoPPKQHV5JfmZX6ku6XOq0zl5iDGE4kDsgGBvE6wzDokrZvdo[/tex]作成[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]的一个子域,且为[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]中的素域.
- 设[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex] 是域 [tex=0.857x1.0]WBOxEEx6dPfNM3eGriw9WQ==[/tex]的代数扩域,且 [tex=0.857x1.0]WBOxEEx6dPfNM3eGriw9WQ==[/tex] 上每一多项式[tex=2.143x1.357]rByUrHVBTQB2C43DbY7ymQ==[/tex]在 [tex=0.857x1.0]WBOxEEx6dPfNM3eGriw9WQ==[/tex] 上的分裂域都是[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]的子域,证明: [tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex] 是代数闭域.
- 设 [tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex] 是特征数为 2 的素域,求出[tex=1.929x1.357]ZvK0aUQmCRkwWSUtHsIu+g==[/tex]的一切三次不可约多项式,其 [tex=1.929x1.357]ZvK0aUQmCRkwWSUtHsIu+g==[/tex] 是 [tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]上的一元多项式环.
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]上的可测函数,证明: [tex=2.786x1.5]gmo7TK4S1I5uTQcu/L821w==[/tex]在[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]上可测.