设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实矩阵, 若对任意的非零 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维实列向量 [tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex], 总有 [tex=4.429x1.214]llbZOzaSxsy88gIN6zZS7aPKHQQX7NPDL7x226Rswfs=[/tex] 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的特征值的实部都大于零.
举一反三
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为半正定阵或半负定阵的充要条件是对任一满足 [tex=3.571x1.143]llbZOzaSxsy88gIN6zZS7cPCLJ3lBdtgbQucP4Fp0+A=[/tex] 的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维实列向量 [tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex], 均有 [tex=3.0x1.0]csywNAQgCnO/YRNTVQy1WQ==[/tex]
- 求证: [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶方阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是反对称矩阵的充要条件是对任意的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维列向量 [tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex], 有 [tex=3.429x1.143]zviQT+QcyxjB1Z7lp+FX6sA/LL/rxMY1c4k7FgfsssM8J8DhqnJ48Ewy43lpyfed[/tex]
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶对称阵,[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶可逆矩阵. 已知 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维列向量 [tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex] 是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的对应于特征值 [tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex] 的特征向量,求矩阵 [tex=4.5x1.714]JQ9TFSUSe+UZ9hiCixUJL4KvVHXifqmC8svsb4HD6RZHgWwTmNjtr/4eHALuX3c1[/tex] 对应于特征值 [tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex] 的特征向量.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, 若存在 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实矩阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex], 使 [tex=4.143x1.286]YCUl/vNcR5SNlwwslg9Jhb5CY//bqvCw+mSVvBQx12Q=[/tex] 是正定阵, 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为非异阵.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实矩阵, [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正定实对称矩阵, 满足 [tex=4.071x1.143]23C06xV+qahUl1T3xcoZnwRQpH8YtXCwkd9Ub4sG38M=[/tex],证明: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 可对角化.