若i1 (t)=√2 cos(ωt)A ,i2 (t)=-√6 sin(ωt)A,求i1 (t)+ i2 (t)。
A: [img=126x25]1803c3ca246bfd8.png[/img]
B: [img=151x29]1803c3ca2f47150.png[/img]
C: [img=151x29]1803c3ca39ac9c8.png[/img]
D: [img=151x29]1803c3ca45b9e01.png[/img]
A: [img=126x25]1803c3ca246bfd8.png[/img]
B: [img=151x29]1803c3ca2f47150.png[/img]
C: [img=151x29]1803c3ca39ac9c8.png[/img]
D: [img=151x29]1803c3ca45b9e01.png[/img]
举一反三
- 求微分方程[img=269x55]17da6536a9fba07.png[/img]的通解; ( ) A: (C15*sin(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t) B: (C15*cos(2*t))/exp(3*t) - (C16*sin(2*t))/exp(3*t) C: (C15*cos(2*t))/exp(3*t) + (C16*cos(2*t))/exp(3*t) D: (C15*cos(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t)
- 若电流i=i1+i2,且i1=10 sin ωt A,i2=10 sin ωt A,则 i 的有效值为( ) A: 20A B: [img=41x47]1803e0183415af2.png[/img] C: 10A D: [img=41x47]1803e0183cbaf59.png[/img]
- 设 [img=143x25]17d60a28192564c.png[/img],X与Y相互独立,令 [img=63x36]17d60a2829e5271.png[/img],则 [img=22x16]17d60a28368e181.png[/img]( )。 A: t(2) B: t(4) C: t(1) D: t(3)
- 设总体X ~ N(0 ,1),(X1 ,X2 ,… ,X5)为其样本,令T = [img=136x48]17e0bccc2e0ad56.png[/img]则有T ~ ( ) . A: t(5) ; B: F (1 ,1) ; C: F (2 ,3) ; D: F (3 ,2) .
- 设\(z = {e^{x - 2y}}\),而\(x = \sin t\),\(y = {t^3}\),则全导数\( { { dz} \over {dt}} = \) A: \({e^{\sin t - {t^3}}}(\cos t - 6{t^2})\) B: \({e^{\sin t - 2{t^3}}}(\sin t - 6{t^2})\) C: \({e^{\cos t - 2{t^3}}}(\cos t - 6{t^2})\) D: \({e^{\sin t - 2{t^3}}}(\cos t - 6{t^2})\)