f(x)=(x^2+4)*根号下4x^2+16求导
举一反三
- 设$f(x)=x^2$,$g(x)=2^x$, 那么 $f \circ f \circ g=$ A: $2^{x^4}$ B: $2^{4x}$ C: $x^{2^{2x}}$ D: $x^{2^{x^2}}$
- 已知函数f(x)是定义在(-∞,+∞)上的奇函数,当x∈[0,+∞)时,f(x)=x()2()-4x,则当x∈(-∞,0)时,f(x)=()(5.0分)A.()x()2()+4x()B.()x()2()-4x()C.()-x()2()+4x()D.()-x()2()-4x
- ∫dx/根号x^2(4-X^2)求导
- 已知\( y = {x^2} + 4x \),则\( dy \)为( ). A: \( (2x + 4)dx \) B: \( 2xdx \) C: \( ({x^2} + 4)dx \) D: \( ({x^2} + 4x)dx \)
- 将函数\(f(x)=\sin^4 x\)展开成Fourier级数为 ____ . A: \(f(x) = \frac{3}{8}-\frac{1}{2}\cos 2x +\frac{1}{8}cos 4x\) B: \(f(x) = \frac{1}{4}-\frac{1}{2}\cos x +\frac{3}{8}cos 4x\) C: \(f(x) = \frac{1}{4}-\frac{1}{2}\sin 2x -\frac{3}{8}cos 4x\) D: \(f(x) = \frac{3}{8}-\frac{1}{2}\sin x -\frac{1}{8}cos 4x\)