设函数f(x)在区间(-3,4)内为减函数,则f (2) f (-2)(填“>”或“<”).
举一反三
- 已知定义域为R的函数f(x)在区间(4,+∞)上为减函数,且函数y=f(x+4)为偶函数,则( ) A: f(2)>f(3) B: f(2)>f(5) C: f(3)>f(5) D: f(3)>f(6)
- 设函数f(x)具有2阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]内 A: 当f'(x)>=0时,f(x)>=g(x) B: 当f'(x)>=0时,f(x)<=g(x) C: 当f'(x)<=0时,f(x)>=g(x) D: 当f'(x)<=0时,f(x)<=g(x)
- .已知奇函数f(x)满足f(-1)=f(3)=0,在区间[-2,0)上是减函数,在区间[2,+∞)是增函数,函数F(x)=,则{x|F(x)>0}= A: {x|x<-3,或03} B: {x|x3} C: {x|-3 D: {x|x<-3,或0
- 设函数f(x)在区间[a,b]上连续,若满足( ) ,则方程f(x)=0在区间[a,b]内一定有实根。 A: f(a)+f(b)<0 B: f(a)+f(b)>0 C: f(a)f(b)<0 D: f(a)f(b)>0
- 设函数f(x)=a|x|(a>0),且f(2)=4,则( ) A: f(-1)>f(-2) B: f(1)>f(2) C: f(2)<f(-2) D: f(-3)>f(-2)