2a(x减2y)减3b(2y减x)减4c(x减2y)分解因式
举一反三
- 设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial y}}=\)( )。 A: \({e^{xy}}({x}y^2 + {x^3} + 2y)\) B: \({e^{xy}}({x^2}y + {x^3} + 2y)\) C: \({e^{xy}}({x}y^2 + {x^3} + 2x)\) D: \({e^{xy}}({x}y+ {x^3} + 2y)\)
- 下列函数在点$(0,0)$的重极限存在的是 A: $f(x,y)=\frac{y^2}{x^2+y^2}$ B: $f(x,y)=(x+y)\sin\frac{1}{x}\sin\frac{1}{y}$ C: $f(x,y)=\frac{x^2y^2}{x^2y^2+(x-y)^2}$ D: $f(x,y)=\frac{x^2y^2}{x^3+y^3}$
- 设随机变量X的分布函数为F(x), 则Y=(X+4)/2的分布函数为( ). A: FY(y) = F(y/2) + 2 B: FY(y) = F(y/2 + 2) C: FY(y) = F(2y) - 4 D: FY(y) = F(2y – 4)
- 指数函数y=2^x在其定义域内单调递()(增、减),y=(1/2)^x在其定义域内单调递()(增、减).
- 下列方程中,不是全微分方程的为( )。 A: \(\left( {3{x^2} + 6x{y^2}} \right)dx + \left( {6{x^2}y + 4{y^2}} \right)dy = 0\) B: \({e^y}dx + \left( {x \cdot {e^y} - 2y} \right)dy = 0\) C: \(y\left( {x - 2y} \right)dx - {x^2}dy = 0\) D: \(\left( { { x^2} - y} \right)dx - xdy = 0\)