• 2022-06-01
    下列方程中,不是全微分方程的为( )。
    A: \(\left( {3{x^2} + 6x{y^2}} \right)dx + \left( {6{x^2}y + 4{y^2}} \right)dy = 0\)
    B: \({e^y}dx + \left( {x \cdot {e^y} - 2y} \right)dy = 0\)
    C: \(y\left( {x - 2y} \right)dx - {x^2}dy = 0\)
    D: \(\left( { { x^2} - y} \right)dx - xdy = 0\)
  • C

    内容

    • 0

      \(\left\{ {\left( {x,y} \right)\left| {2 \le {x^2} + {y^2} \le 4} \right.} \right\}\)是闭区域.

    • 1

      曲线\( \left\{ {\matrix{ { { x^2} + {y^2} = {z^2}} \cr { { z^2} = y} \cr } } \right. \)在坐标面\( yoz \) 上的投影曲线方程为( ) A: \( \left\{ {\matrix{ { { x^2} + { { \left( {y - {1 \over 2}} \right)}^2} = {1 \over 4}} \cr {z = 0} \cr } } \right. \) B: \( \left\{ {\matrix{ { { z^2} = y} \cr {x = 0} \cr } } \right. \) C: \( \left\{ {\matrix{ {z = {y^2}} \cr {x = 0} \cr } } \right. \) D: \( \left\{ {\matrix{ { { y^2} + { { \left( {x - {1 \over 2}} \right)}^2} = {1 \over 4}} \cr {z = 0} \cr } } \right. \)

    • 2

      以点\( (2, - 1,2) \) 为球心,3为半径的球面方程为( ) A: \( {\left( {x + 2} \right)^2} + {(y - 1)^2} + {(z + 2)^2} = 9 \) B: \( {\left( {x + 2} \right)^2} + {(y - 1)^2} + {(z + 2)^2} = 3 \) C: \( {\left( {x - 2} \right)^2} + {(y + 1)^2} + {(z - 2)^2} = 9 \) D: \( {\left( {x - 2} \right)^2} + {(y + 1)^2} + {(z - 2)^2} = 3 \)

    • 3

      计算 \(\int_{\;L} {\left( {x + y} \right)dx + \left( {y - x} \right)dy} \),其中\(L\)是抛物线 \(y^2=x\)上从点\((1,1)\) 到点\((4,2)\)的一段弧。 A: \( { { 35} \over7}\) B: \( { { 36} \over 5}\) C: \( { { 37} \over 6}\) D: \( { { 34} \over 3}\)

    • 4

      \( \int_0^1 {dx} \int_ { { x^2}}^x { { {\left( { { x^2} + {y^2}} \right)}^{ - {1 \over 2}}}dy} \) =( ) A: \( \sqrt 2 + 1 \) B: \( \sqrt 2 - 1 \) C: \( \sqrt 2 \) D: \( \pi \)