• 2022-06-01
    设幂级数 [tex=1.357x2.786]Aj7i9zHGGZDV5qINnwBQB5zOxCNxhXHGv2Eu9TcA8E4=[/tex][tex=4.5x1.357]CNXA6fexr/EIH/5Eu9ynpw==[/tex] 在 [tex=1.857x1.0]YxEFKugBV3gg0vHD/sonJQ==[/tex] 条件收敛,则该幂级数的收敛半径为______.
  • 4.由于幂级数 [tex=1.357x2.786]0fvrPDjqzeQSXeGDb1AlTliPrI5BD2kAoAv5rNYcWjo=[/tex][tex=4.5x1.357]CNXA6fexr/EIH/5Eu9ynpw==[/tex] 在 [tex=1.857x1.0]YxEFKugBV3gg0vHD/sonJQ==[/tex] 条件收敛,由阿贝尔引理知 [tex=1.857x1.0]HbWLV59asxDZpMrk33FLKA==[/tex] 为幂级数 [tex=1.357x2.786]hIuT9LL2kpouwh51Cyw7BSjEiUh1KejtDpDK2sllMWA=[/tex][tex=4.5x1.357]6RYmIPi9o1V3yESR5cXAGA==[/tex] 的收敛区间的端点,则收敛半径为4.

    举一反三

    内容

    • 0

      设幂级数[tex=3.643x3.286]WGu493lWbQkNjIXIJ06onV6IZmMDrYShNGcPME8shwWKH5T1GYVkFqbYkQtvxgXS[/tex]的收敛半径为[tex=1.143x1.214]WB5oUFU97imVoOqmwwnMtg==[/tex], 而[tex=3.5x3.429]UU1qstNjdmzg7TFKGbeGXsJXpXGu4k7SZ5Pl374mxwk=[/tex]的收敛半径为[tex=1.143x1.214]akFdfHl3PdcRxRUQleHWdA==[/tex].若把幂级数[tex=6.214x3.286]WGu493lWbQkNjIXIJ06oneLZcJFoQ3BGITMlybWara2JPRKknBTl8nFXbTZweoPu0vBt34L3pxIcH/n/A76GVQ==[/tex]的收敛半径记为[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex], 证明:[tex=7.286x1.357]/Ormn0xncvBSYPuYSYE8Zf4KYeLykBmiGoKt1A6m2PKY9SnlqBOnZ0Or2B4jHlMy[/tex]

    • 1

      设幂级数[tex=3.643x3.286]WGu493lWbQkNjIXIJ06onV6IZmMDrYShNGcPME8shwWKH5T1GYVkFqbYkQtvxgXS[/tex]的收敛半径为[tex=1.143x1.214]WB5oUFU97imVoOqmwwnMtg==[/tex], 而[tex=3.5x3.429]UU1qstNjdmzg7TFKGbeGXsJXpXGu4k7SZ5Pl374mxwk=[/tex]的收敛半径为[tex=1.143x1.214]akFdfHl3PdcRxRUQleHWdA==[/tex].若把幂级数[tex=6.214x3.286]WGu493lWbQkNjIXIJ06oneLZcJFoQ3BGITMlybWara2JPRKknBTl8nFXbTZweoPu0vBt34L3pxIcH/n/A76GVQ==[/tex]的收敛半径记为[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex], 证明:当 [tex=3.571x1.214]UwYj7//Vchh6BHOGv2BcaKcde3PLpSYYPS7ulmfNRD8=[/tex]时, [tex=7.071x1.357]KREFzHfNLktQlPN7y/7IF7Vgs1XtsMgQQ7IJi/yWGRM9VyMyXJwThLHQUItzCk3I[/tex].

    • 2

      设级数[tex=3.571x2.714]LCs/jzl+nr3KBTJXBn4IiTaMdvoS/p/hGL/Jv9ntegzmzbVBv3v1HeKEgBlLcyLM[/tex]的收敛半径为[tex=7.286x1.357]sTdvH6zX0iZNqILTrUec+Q==[/tex],证明:级数[tex=7.143x2.714]LCs/jzl+nr3KBTJXBn4IiVrR/a63aRDgwm6Ulx0DCkqQZXUGezi8qQqRicSofTkUWyb3f6mqFTz2twehW0bB7Q==[/tex]的收敛半径为[tex=7.714x2.786]88n1NtKriG0YM72QT5w50ARKMC3GTCC7OGxgHAYlBdhewQuMEfErAwKQ9wpi7IxVHJewFuEn04JodLhBCFDNBA==[/tex].

    • 3

      求幂级数的收敛半径与收敛区域.[tex=4.0x1.5]Xdav2khU6mDVwWx3MkeDDjPfsDmz2505cx6KRPCh8Jk=[/tex],[tex=4.786x1.286]qY2WXCNTTtm52rrZdeYoxQ==[/tex].

    • 4

      设正项级数 [tex=2.643x1.357]txD3QEY3vcweZJuJhQiJqQ==[/tex]收敛 ,证明级数[tex=5.571x1.357]IAsk7sFNw9hFKuiKwVEkUcwQ1mswCRh67nB4qUbaTe3LRdfGdjm6zwnVDhNGrTr+[/tex] 也收敛.