函数f(x)=(x−3)23,点x=3是f(x)的( )
举一反三
- 设函数$y = f({x^3})$可导,求函数的二阶导数$y'' = $( ) A: $6xf'({x^3}) + 9{x^4}f''({x^3})$ B: $6f'({x^3}) + 9{x^3}f''({x^3})$ C: $6xf'({x^3}) + 9{x^3}f''({x^3})$ D: $6{x^2}f'({x^3}) + 9{x^3}f''({x^3})$
- 已知$f(x)={{x}^{3}},g(x)=|{{x}^{3}}|$,则$x=0$( )。 A: 既是函数$f(x)$的极值点,又是函数$g(x)$的拐点 B: 既是函数$f(x)$的极值点,又是函数$g(x)$的极值点 C: 既是函数$f(x)$的拐点,又是函数$g(x)$的拐点 D: 既是函数$f(x)$的拐点,又是函数$g(x)$的极值点
- 设函数f(x)=(x-1)^(2/3),则点x=1是f(x)的
- .已知奇函数f(x)满足f(-1)=f(3)=0,在区间[-2,0)上是减函数,在区间[2,+∞)是增函数,函数F(x)=,则{x|F(x)>0}= A: {x|x<-3,或03} B: {x|x3} C: {x|-3 D: {x|x<-3,或0
- 若匿名函数f = [lambda x=3: x*3, lambda x: x**3],则f[1](f[0]())返回的结果是