举一反三
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 是一个 [tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex] 级矩阵,证明 如果 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 是对称矩阵,且对任一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex] 维向量 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 有[tex=4.0x1.143]rLVONmXxLnhl8YaM4UacI9oY4xHCd5UxvQ2cXFY3Iyc=[/tex] 那么[tex=3.429x1.0]gDaSCeRv2nAY2ZKE6tr+4g==[/tex]
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个元素的集合,证明[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]上有[tex=1.286x1.286]u1nM3EZnuokSWMik0n0yiw==[/tex]个二元关系。
- 图[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个顶点,[tex=2.357x1.143]dkoxwOpyXKTw0HsOj3nnBg==[/tex]条边,证明[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]中至少有一个顶点度数大于等于[tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex]。
- 设[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]和[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]是素数且[tex=2.357x1.0]/4eX5puuWHulp5K6ynZ3MA==[/tex]。随机选择小于[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]的正整数不被[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]或[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]整除的概率是多少?
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]为[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶矩阵,满足[tex=3.571x1.143]KI4+kT+jSz24vWLs5qUVCfiWln2IySIv5TOUPEaWufY=[/tex]([tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶单位矩阵).[tex=3.143x1.357]NGkxbVuCvHHgvepAfNk63A==[/tex],求[tex=3.0x1.357]JIjNa1KhoPNiAPNbrScB7A==[/tex]
内容
- 0
设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级正交矩阵,证明:如果[tex=2.643x1.357]xnNlsIp2wAAq+OkAnU/oIQ==[/tex],且[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是奇数,那么1是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的一个特征值。
- 1
设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级矩阵,证明: 1) [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是反对称矩阵当且仅当对任一[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维向量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex],有[tex=4.0x1.143]rLVONmXxLnhl8YaM4UacI9oY4xHCd5UxvQ2cXFY3Iyc=[/tex]; 2) 如果[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是对称矩阵,且对任一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维向量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] ,有[tex=4.0x1.143]rLVONmXxLnhl8YaM4UacI9oY4xHCd5UxvQ2cXFY3Iyc=[/tex],那么[tex=2.071x1.0]P1sZi5Sh6qXV+PX80otJJg==[/tex].
- 2
设在[tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex]上有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个可测集[tex=5.786x1.214]tMBgJvl4DBVEh8itVD2PxMCz1nc0LEsdboRBUDprPPE=[/tex]如果[tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex]中每一个点至少属于上述[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个集中的[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]个集,则[tex=5.786x1.214]oGsI68JVHRZ1JmQGfew7pg70EuIlOUyYWIVErpkt9v8=[/tex]中至少有一集具有测度[tex=1.786x2.143]3WXxqEoC4hWZxXwsu6R9kXSb8vJY6PJoxhkHQaPjKyA=[/tex].
- 3
设 [tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex] 是任意非空集合,并令[p=align:center][tex=8.643x1.357]OgOxz1NJgE6+KmQpd+CEYA2uksdYtMgjnkhzfW0ii80=[/tex]证明: [tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex] 的一个关系决定 [tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex] 的一个子集,反之,[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex] 的任一子集决定 [tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex] 的一个关系,且不同的关系决定 [tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex] 的两个不同的子集.
- 4
将[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex] 个编号为1 至[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]的球放入[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个编号为1 至[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex] 的盒子中,每个盒子只能放一个球,记[tex=18.429x2.429]mM1DVNhuu1ZJsgdDJkNvlwxaN7R5hIKvZ5UbBzEZmfp2UhP3Zq351VRzWEMRdm3uinSrcc7p8+nzmPsSIG54E2V/P5fGE3U4D9iuhcuHZRc9WTbUtJcvnTtZEQLtkmkk[/tex]且[tex=5.357x3.286]H17WeEMdvGiKmUaBv3UHlr+w908WeOAYwlNd4OXIYos=[/tex] 试证明:[tex=8.214x2.429]eSRIeOCe8BWNAn2F+8quczsQqvTV6vlqRvgkDNDaN3kDa1RFoMqnHRGBmlu3Vu2Cz2uspWlfB+TZynrVoyPcTXHUNzZUJpt0HOhK1iuQXI0=[/tex]