设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个元素的集合,证明[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]上有[tex=1.286x1.286]u1nM3EZnuokSWMik0n0yiw==[/tex]个二元关系。
举一反三
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个元素的集合, [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]上有多少个三元关系呢?
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级正交矩阵,证明:如果[tex=2.643x1.357]xnNlsIp2wAAq+OkAnU/oIQ==[/tex],且[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是奇数,那么1是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的一个特征值。
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级正交矩阵,证明:如果[tex=3.429x1.357]KfxiXgR+wZCad+SOlQefBQ==[/tex],那么-1是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]得一个特征值。
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级矩阵,证明: 1) [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是反对称矩阵当且仅当对任一[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维向量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex],有[tex=4.0x1.143]rLVONmXxLnhl8YaM4UacI9oY4xHCd5UxvQ2cXFY3Iyc=[/tex]; 2) 如果[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是对称矩阵,且对任一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维向量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] ,有[tex=4.0x1.143]rLVONmXxLnhl8YaM4UacI9oY4xHCd5UxvQ2cXFY3Iyc=[/tex],那么[tex=2.071x1.0]P1sZi5Sh6qXV+PX80otJJg==[/tex].
- 证明:如果[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级正交矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是上三角矩阵,那么[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是对角矩阵,且[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的主对角元为1或-1.