设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 矩阵,它的 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 个行向量是某个 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 元齐次线性方程的一个基础解系,又 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 阶可逆矩阵,证明:[tex=1.571x1.0]39kvwgjRy4Zccv3OOZwTRg==[/tex] 的行向量也是该线性方程的一个基础解系.
举一反三
- 设 [tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 中 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个列向量线性无关, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的秩 未知类型:{'options': ['大于\xa0[tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]', '大于\xa0[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]', '等于\xa0[tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]', '等于\xa0[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]'], 'type': 102}
- 设[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]及[tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]阶矩阵[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]都可逆,求:[br][/br][tex=5.929x2.929]jcCMHflCR8OS9TosV6N5vF5TBJ+hnWfKaPJMOj8+lW0ygKrP6wzvVGy4qDOEHs7MmQbphQ3QGPzl+GgH9R2nuUXdv9OFV78Y/zQ8LkM9gwU=[/tex]
- 设[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]及[tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]阶矩阵[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]都可逆,求:[br][/br] [tex=5.929x2.929]jcCMHflCR8OS9TosV6N5vBtqjFrNFsn83APbaxuqgln63xB3nfahLwrMM85/LxtPiUi2rhRjG7dK5tvmUaNfzVRWRWHvWd+Bwo8bb86k1ZY=[/tex]
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=2.714x1.071]/nWgWZWXmeNCPcwAggrwNg==[/tex] 矩阵, [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是 [tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 矩阵. 若 [tex=3.214x1.214]Zd4LbMRJAkCJfdBwm7Q3pg==[/tex], 求证: [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个列向量线性无关.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 阶矩阵, [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵, 求证: 若 [tex=1.786x1.214]s/df2ZE+BhF7kkKI1Rb3ww==[/tex] 没有公共的特征 值, 则矩阵方程 [tex=4.0x1.0]rHmk49/Mw119BRwDDrzk+g==[/tex] 只有零解 [tex=2.714x1.0]dQvKenKVMNVZUOQUyPeZlA==[/tex]