求下列各函数的微分:[tex=6.857x1.214]aWCcawiG0lTSIeCqIs3/O9nllhC2x9/Sch9FLS1fxzs=[/tex]
举一反三
- 以4,9,1为为插值节点,求\(\sqrt x \)的lagrange的插值多项式 A: \( {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) B: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) C: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x +1) + {1 \over {24}}(x - 4)(x - 9)\) D: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) - {1 \over {24}}(x - 4)(x - 9)\)
- 设函数$y = f({x^3})$可导,求函数的二阶导数$y'' = $( ) A: $6xf'({x^3}) + 9{x^4}f''({x^3})$ B: $6f'({x^3}) + 9{x^3}f''({x^3})$ C: $6xf'({x^3}) + 9{x^3}f''({x^3})$ D: $6{x^2}f'({x^3}) + 9{x^3}f''({x^3})$
- 设X ~ N(2, 9)则Y = (X – 2 )/9 ~ N(0, 1).
- 设随机变量X服从区间[0,3]上的均匀分布,则P(X≤1)=()。 A: 1/3 B: 1/9 C: 2/3 D: 2/9
- 中国大学MOOC: 设X~N(2, 9)则Y= (X– 2 )/9 ~N(0, 1).