证明若[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是每个区域至少由[tex=3.714x1.357]t4m09K08tJGB1uusdhNvVuc5URErc/eaaGjLa86CMP4=[/tex]条边围成的连通平面图,则[tex=7.143x1.357]LLrBhqlfzFUTMWOZW2F2hBiVCl9ndgMIOcEv+gIW3cs=[/tex]。这里[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]、[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]分别是图[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的顶点数和边数。
举一反三
- 图[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个顶点,[tex=2.357x1.143]dkoxwOpyXKTw0HsOj3nnBg==[/tex]条边,证明[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]中至少有一个顶点度数大于等于[tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex]。
- 设[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是带有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个顶点的简单图。证明:[br][/br][tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是树当且仅当[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是连通的并且有[tex=1.929x1.143]odTH0p5clPZMk1jQf4ctjw==[/tex]条边。
- 设[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶有限群,试证:若对[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]的每一个因子[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex],[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]中至多只有一个[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]阶子群,则[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是循环群.
- 设[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是带有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个顶点的简单图。证明:[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是树当且仅当[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]没有简单回路并且有[tex=1.929x1.143]odTH0p5clPZMk1jQf4ctjw==[/tex]条边。
- 有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个顶点的有向图[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]最多有条边。