将下列命题符号化.若[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]和[tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]是偶数,则[tex=1.786x1.143]+JWM/sEBO49/oaEmZ4MdCQ==[/tex]是偶数.
举一反三
- 将下面命题符号化:若[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]和[tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]是奇数,则[tex=1.786x1.143]+JWM/sEBO49/oaEmZ4MdCQ==[/tex]是偶数。
- 设 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 是单位向量,证明 [tex=1.786x1.143]+JWM/sEBO49/oaEmZ4MdCQ==[/tex] 平分 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]与 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 的夹角.
- 已知二个非零向量[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex],[tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex],求 [tex=1.786x1.143]+JWM/sEBO49/oaEmZ4MdCQ==[/tex]与 [tex=1.786x1.143]S9ildicJrv0Uvz/I1XnOaA==[/tex] 共线的条件.
- 以向量 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 为边作平行四边形,试用 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 与 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 表示 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 边上的高向量.
- 用真值表法和主析取范式法证明下面推理不正确. [br][/br] 如果[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]之积是负数,则 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]中恰有一个是负数.a 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]之积不是负数.所以 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 都不 是负数.