在半径[tex=4.214x1.0]/NpEkPymBCp04VtHBoSf4Q==[/tex]的圆柱体内有均匀磁场,其方向与圆柱体的轴线平行,且[tex=9.214x2.429]t3uO5pvcJYeeSg8P20mzbT5gYq4qAGuiNn0cpTkXz/iKhKHyJ+3klWhYIfOpfotA[/tex],圆柱体外无磁场,试求离开中心口的距离分别为[tex=2.214x1.0]+OhCnVCH12ot/2A7n9/KIA==[/tex],[tex=2.714x1.0]C8fksrdoUAWixAIrCi76LQ==[/tex],[tex=2.714x1.0]lkXBl6iyXy6daj1fDJRVog==[/tex],[tex=2.214x1.0]UGnnot4APqDCzNcsdoSdVQ==[/tex]和各点的感生电场的场强。
举一反三
- 在半径为[tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex]的无限长金属圆柱体内部挖去一半径为[tex=1.0x1.286]iIgNeVsz1+rM89s+mamhBg==[/tex]的无限长圆柱体,两柱体的轴线平行,相距[tex=0.571x1.286]E8TCNnEPtMKJ0mC2xxh0/Q==[/tex],有电流沿轴线方向流动,且均匀分布在空心柱体的截面上,电流密度为[tex=0.714x1.214]seyq70h4zA7bakIm3LKHEQ==[/tex]试证明空腔中的磁场是均匀的.[img=342x193]17a7cc2e4323eeb.png[/img]
- 在半径为[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的无限长金属圆柱体内部挖去一半径为 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的无限长圆柱体,两柱体的轴线平行,相距为[tex=0.571x1.0]QDHYLzpRIwhOrWBqGonCgg==[/tex],如图所示。今有电流沿空心柱体的轴线方向流动,电流[tex=0.5x1.0]3EF1VcotinZAjtQqtSWaxw==[/tex]均匀分布在空心柱体的截面上。(1)分别求 圆柱轴线上和空心部分轴线上的磁感应强度的大 小; (2) 当[tex=4.143x1.0]pIsTDId06CAsnAaMCW0f5Q==[/tex],[tex=4.286x1.0]U3lmh0FyEGOq+EcLpbol9w==[/tex],[tex=4.357x1.0]iGuqk0QUzKBCCYOgHhSebA==[/tex]和[tex=3.0x1.0]bavXJyeYWHQSR1mRakpr4w==[/tex]时,计算上述两处磁感应强度的值。[img=190x185]1793a4fe0d706f4.png[/img]
- 一无限长的半径为[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的圆柱体内,电荷是均匀分布的。圆柱体单位长度的电荷为[tex=0.643x1.0]7dwHQGHL24uGORI8NryViw==[/tex],用高斯定理求圆柱体内距轴线的距离为[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]一点的场强。
- 在半径为[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的无限长金属圆柱体内部挖去一 半径为[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]的无限长圆柱体,两柱体的轴线平行,相距为[tex=0.571x1.0]TcM6B5Wrs5vy9dWrxRPSdg==[/tex],如图8.27所示,今有电流沿空心柱体的轴线方向流动,电流I均匀分布在空心柱体的截面上.[br][/br][img=233x184]17dec7b4712df37.png[/img]分别求圆柱轴线上和空心部分轴线上的磁感应强度的大小:
- 个半径为[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]的无限长圆柱体均匀带电,体电荷密度为[tex=0.571x1.0]BMX8X5xI0h1MuijqrEhCyw==[/tex]。求圆柱体内、外任意一点的电场强度。