• 2022-06-10
    设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是实数域上的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级矩阵证明:如果[tex=2.643x1.357]xnNlsIp2wAAq+OkAnU/oIQ==[/tex],且[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的每一个元素等于它自己的代数余子式,那么[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是正交矩阵.
  • 证明:由于[tex=5.5x2.643]y/X6r9QMw3NxZ6MUXMYeVNGnRkX2aO0MM7lTqOee4i4=[/tex],因此当[tex=2.643x1.357]xnNlsIp2wAAq+OkAnU/oIQ==[/tex]时,据已知条件得[tex=16.857x1.5]CfeBEF5gNeLBv7kKkGEoPG9fITSmgFUul1eZ/fbGc4stZNbXx6CKpGFXUb9VmXOVy5ZTmvyzNsNLFG/91SXVJA==[/tex],其中[tex=3.857x1.214]qfZcf4tVjkijhx+0dGAMoNViyudjUKgqjhurt2GypkA=[/tex].因此[tex=3.5x1.214]60YnrozrUep8M0XrzxzjLgsPP7CZduQrI1cDkDthPfU=[/tex].从而[tex=6.214x1.214]3kIVBPig34VqChJZMltvY+/cNsF6CAqcgPHSm4olQp4=[/tex].这表明[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是正交矩阵.

    内容

    • 0

      若[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]为奇数阶的正交矩阵,且[tex=2.643x1.357]xnNlsIp2wAAq+OkAnU/oIQ==[/tex],试证1是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的一个特征值

    • 1

      设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是实数域上的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级对称矩阵,且[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的秩为[tex=3.0x1.357]jGI6hkgva7Rcyr50NnHREw==[/tex]。证明:[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]至少有一个[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]阶主子式不为0.

    • 2

      证明:如果[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的相似类里只有一个元素,那么[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]一定是数量矩阵.

    • 3

      设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级矩阵,证明: 1) [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是反对称矩阵当且仅当对任一[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维向量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex],有[tex=4.0x1.143]rLVONmXxLnhl8YaM4UacI9oY4xHCd5UxvQ2cXFY3Iyc=[/tex]; 2) 如果[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是对称矩阵,且对任一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维向量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] ,有[tex=4.0x1.143]rLVONmXxLnhl8YaM4UacI9oY4xHCd5UxvQ2cXFY3Iyc=[/tex],那么[tex=2.071x1.0]P1sZi5Sh6qXV+PX80otJJg==[/tex].

    • 4

      设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是实数域上的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级对称矩阵,且[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的秩为[tex=3.0x1.357]jGI6hkgva7Rcyr50NnHREw==[/tex]。证明:[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的所有不等于0的[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]阶主子式都同号。