设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级正交矩阵,证明:如果[tex=2.643x1.357]xnNlsIp2wAAq+OkAnU/oIQ==[/tex],且[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是奇数,那么1是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的一个特征值。
举一反三
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级正交矩阵,证明:如果[tex=3.429x1.357]KfxiXgR+wZCad+SOlQefBQ==[/tex],那么-1是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]得一个特征值。
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是实数域上的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级矩阵证明:如果[tex=2.643x1.357]xnNlsIp2wAAq+OkAnU/oIQ==[/tex],且[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的每一个元素等于它自己的代数余子式,那么[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是正交矩阵.
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级矩阵,证明: 1) [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是反对称矩阵当且仅当对任一[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维向量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex],有[tex=4.0x1.143]rLVONmXxLnhl8YaM4UacI9oY4xHCd5UxvQ2cXFY3Iyc=[/tex]; 2) 如果[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是对称矩阵,且对任一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维向量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] ,有[tex=4.0x1.143]rLVONmXxLnhl8YaM4UacI9oY4xHCd5UxvQ2cXFY3Iyc=[/tex],那么[tex=2.071x1.0]P1sZi5Sh6qXV+PX80otJJg==[/tex].
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 是一个 [tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex] 级矩阵,证明 如果 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 是对称矩阵,且对任一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex] 维向量 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 有[tex=4.0x1.143]rLVONmXxLnhl8YaM4UacI9oY4xHCd5UxvQ2cXFY3Iyc=[/tex] 那么[tex=3.429x1.0]gDaSCeRv2nAY2ZKE6tr+4g==[/tex]
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是一个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级正交矩阵,证明:如果[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是奇数,且[tex=2.643x1.357]2b4bQFAKsSsWrcRvU4LFtQ==[/tex],则1是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的一个特征值.