举一反三
- 下列周期函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]的周期为[tex=1.071x1.0]cWYnFY7tUlCT6WhMhv7goA==[/tex],试将[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]展开成傅里叶级数,如果[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[tex=3.071x1.357]dI/zQ2dAuab0sI9V1YLd+w==[/tex]上的表达式为:(2)[tex=9.857x1.5]pRJ95vWGjr1f90QgKzUvPeOQo4NAF+TvdpFQUXXdEgWX1T3yQcFbyRAQWVPZ9iHG[/tex]
- 设随机变量X的概率密度为[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex],求[tex=2.714x1.214]jacSJ4coCvuTfFjPJkXs5g==[/tex]的概率密度.
- 设[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是可测集[tex=0.786x1.0]XvHgf70VtK2FH5G93l0k3g==[/tex]上的非负可测函数,试利用定理1. 3 证明(2) 若[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]还是有界的,则存在非负上升的简单函数列[tex=2.143x1.357]6neFUXQSMEb2KdQQeK7LqQWMvIZETs9PtatB8HA02Rg=[/tex], 使[tex=2.429x1.357]sMlw5nJcocmSMNK7l2GI9w==[/tex]在[tex=0.786x1.0]XvHgf70VtK2FH5G93l0k3g==[/tex]上一致收敛于[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]
- 设[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]是无源场[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的向量势[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]是 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 的任一向量势,证明[tex=6.143x1.214]g7wyRhWruAXx0N1FMyvESlZgYEnMQ3lvRafarxwwEbXV99S6J00fCawIcByb6rG9n6AI76G9yEUzyyMvL3kVhw==[/tex]其中 [tex=0.643x0.786]auWDqwusiioGLyvzZuKyJw==[/tex] 为任一数量场.
- 证明如果函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]和[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]使得[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是[tex=3.143x1.357]ZuRtT8Wk+WJPrIgEMh/UFQ==[/tex]的,则[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是[tex=3.429x1.357]pweQz6vYdJSfN1APBJuJ8Q==[/tex]的。
内容
- 0
求函数[tex=3.286x1.429]kdT+eIE7CHPynuN6CaN40g==[/tex](抛物线)隐函数的导数[tex=1.071x1.429]BUw1BPFU3fsJlAl/vt9M9w==[/tex]当x=2与y=4及当x=2与y=0时,[tex=0.786x1.357]Hq6bf3CacUy07X+VImUMaA==[/tex]等于什么?
- 1
设 [tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex] 是定义在 [tex=1.214x1.214]YiUtaNKPTk7KugrVopd0dw==[/tex] 上的可微函数, 且 [tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex] 与 [tex=2.214x1.429]i+dnt0m+Vi0IpEF4DSu/zA==[/tex] 都是 [tex=1.214x1.214]YiUtaNKPTk7KugrVopd0dw==[/tex] 上的可积函数. 试证明 [tex=6.357x2.643]QBplUUa9cxVwbrHZ12pGboOdHSmXF2YFvRPxyAAWPh7Baqq75fCO4bhFBmgQJ3yY[/tex].
- 2
设[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[tex=1.857x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]上连续,在[tex=2.214x1.357]mpyYBdP7k8056w1o+qOOxw==[/tex]内可导,且[tex=2.857x1.071]1GIuOTeVWCaxYOtDNPK2Tw==[/tex],证明:存在[tex=3.286x1.357]EV4pc+LBkNBOhd4NZUA5NQ==[/tex],使得[tex=16.286x2.786]jyQ23P6uTtm4obItveVbez5O+mx1c67/+5/byH3o0iCFo5xckzlPpltA0c+p+kPIxdJrBAlIVa1IL6DW9wh6yphZezcV5hEMxr+1xFTAmucYG3ZQa4NovK4MTGz+fVtwI1jv/fs+BUguSajpuqjoHpYA5uwwMF/iBd8kXHUPEuA=[/tex]
- 3
假定[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]、[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]和[tex=1.929x1.357]PF3ys5sCH7xL9V4l3n5Ang==[/tex]为函数,使得[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是[tex=3.429x1.357]pweQz6vYdJSfN1APBJuJ8Q==[/tex]的,[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]是[tex=3.5x1.357]i1h+gXObWOZdoFBEPZ7BbQ==[/tex]的。证明[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是[tex=3.5x1.357]i1h+gXObWOZdoFBEPZ7BbQ==[/tex]的。
- 4
下列周期函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]的周期为[tex=1.071x1.0]cWYnFY7tUlCT6WhMhv7goA==[/tex],试将[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]展开成傅里叶级数,如果[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[tex=3.071x1.357]dI/zQ2dAuab0sI9V1YLd+w==[/tex]上的表达式为:(1)[tex=11.286x1.5]5U9GdbHJKDgjuFkXJSrzULRfnXQYmtRNhThBBROPBwD9mXcghteFDeHwfjXFAdiC[/tex]