设 [tex=0.5x1.0]wPh71/L+tm8emC/JD+8oZg==[/tex] 是群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的固定元素,[tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex] 是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的子群。证明群[tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex]与群 [tex=2.786x1.429]B9dTMVNvhdNezOzLQcorYw==[/tex]同构 。
举一反三
- [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是群,[tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex] 是循环子群且在[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中正规,则 [tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex] 的子群在[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中都正规 .
- 设 [tex=23.286x1.357]TtNDrRahehnchGQDrDvkDviYdfKbaHF6UGvIUhfE+H8fphUl4ETL3+6mzUEY0ltbwOM0+raAP+o4e174eK5eBbTpvOMN4MSTMb3Rb8M6L+Q=[/tex] 。 证明: 加法群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 与 [tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex]同构。
- 设 [tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex] 是群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的子群. 证明: 如果 [tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex] 的任一个左陪集也是它的一个右陪集, 则 [tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex] 是 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的正规子群.
- 设[tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex]是群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的子群,假设 [tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex] 的任意两个左陪集的乘积仍是一个左陪集, 证明:[tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的正规子群.
- 设群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的子群[tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex]的指数为[tex=0.643x0.786]h6IfGOxBlahC8le5jX4WiA==[/tex],证明[tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex]中包含[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的一个正规子群 [tex=0.857x1.0]+NBI8Pm2vVS+bGgOpHKyOA==[/tex]且[tex=4.714x1.357]LSBY9QklY9u2L9/QUilFW4M3NvE4IIJ9caTgMo3kWgo=[/tex]。