lim[ln(1+x)/x](x->0)
lim[ln(1+x)*1/x](x->0)令x=1/nn-->∞原式=lim[nln(1+1/n)](n->∞)=lim[ln(1+1/n)^n](n->∞)=lne=1【书上省略了这个过程】书上第一题的答案过程:lim[ln(1+x)/x]=lim[1/x*ln(1+x)]=lim[[ln(1+x)^(1/x)]=ln[lim(1+x)^(1/x)]=lne=1lim[2arcsin(3x)/x]=lim6x/x=6
举一反三
内容
- 0
lim(x→0)[√(1+tanx)-√(1+sinx)]/[x√(1+sinx^2)-x]求详尽解体步骤,拜谢
- 1
\( \lim \limits_{x \to {0^ + }} {\left( {\cot x} \right)^ { { 1 \over {\ln x}}}} \)=_____ ______
- 2
求lim(x->0)(1+2x)^(1/x)和lim(1-3x)^(1/x)的级限,
- 3
求极限lim[x-x^2ln(1+(1/x))]x->∞
- 4
当x趋于0时,lim(1+X)^(1/X^2)和lim(1+X)^(1/X^3)中无穷大量是?