举一反三
- 设函数 [tex=3.214x1.357]QP+eOmHJqKCByj1gWc95fw==[/tex] 在单位圆 [tex=2.857x1.357]W2UvKR01GUJgbq0KdXYJYQ==[/tex] 内解析,并且满足条件 [tex=9.571x1.357]c8f8pYOWcLRchWEduA0fr6P3iqy5eGywOX8jdwKtHHe2TcTMs0ujGegNHVSj8rzn[/tex], 试证明在 [tex=2.857x1.357]W2UvKR01GUJgbq0KdXYJYQ==[/tex] 内恒有[p=align:center][tex=13.5x2.714]JiSSM7lWuZhUfK/0U2SAH06k8wS3B76ksePXghCEk0zYGsVGP0UbmEc8leKhgwhyO15VkcpYO+JSr2RP2uDN4+OyiN8881A+Dsitm3yVbK8=[/tex]
- 设 [tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex] 在单位圆 [tex=2.857x1.357]W2UvKR01GUJgbq0KdXYJYQ==[/tex] 内解析,如果原点是函数 [tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex] 的 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 级零点,并且 [tex=7.786x1.357]xo1a9707TLvKJs440R8jQDpeL1pvBylUMxt0PbY2Z2E=[/tex], 证明在 [tex=2.857x1.357]W2UvKR01GUJgbq0KdXYJYQ==[/tex] 内恒有 [tex=5.714x1.357]ZhxLb4tGirvvU9aDFRRDeW4UQoF9lxRb61JytoKygDw=[/tex] Schwarz 引理 ) .
- 设函数 [tex=3.286x1.357]ySGySJBkLne3ga0KuR9uXg==[/tex] 在 [tex=2.857x1.357]W2UvKR01GUJgbq0KdXYJYQ==[/tex] 内单叶解析,且将 [tex=2.857x1.357]W2UvKR01GUJgbq0KdXYJYQ==[/tex] 共形映射成[tex=3.429x1.357]n7NdiXnSY0QeVPpHDbeyGQ==[/tex]试证[tex=3.286x1.357]ySGySJBkLne3ga0KuR9uXg==[/tex] 必是分式线性函数.
- 求证:级数[tex=4.143x3.286]3PXegz5bAQsuTODB0U8KrO8dE2QFyGzTKIgAWyUOAjW2NnK99u1z9bgI+kTvhzvW[/tex]在[tex=2.857x1.357]bxkuEf5OdjtfMlwpIXZhFYFm4mzHICAh/+PdGm82/Ds=[/tex]上发散;在[tex=2.857x1.357]W2UvKR01GUJgbq0KdXYJYQ==[/tex]内绝对收敛且内闭 一致收敛,但非一致收敛。
- 方程 [tex=5.714x1.357]xhuCELwdYYTHIVhXFsrSHw==[/tex]在圆 [tex=2.857x1.357]W2UvKR01GUJgbq0KdXYJYQ==[/tex]与在圆环[tex=4.714x1.357]1k3mGdhDqEOVhlNCTnMSzA==[/tex] 内各有几个根?
内容
- 0
设: 1) 函数 [tex=2.643x1.357]g1Wo3ALRzTk0js5m9GO2sA==[/tex]在区域 [tex=10.857x1.357]WX80o8BeL09QUeE1S+jCKaJePOnFz7AKz0cEfVMt8NI=[/tex]内连续; 2)函数 [tex=2.071x1.357]eAvaTAXWWX5VwHAZCgurVQ==[/tex]在区间 [tex=2.571x1.357]sjdPs/hhXAmvACj9h5RVRw==[/tex] 内连续, 且函数值属于区间[tex=2.429x1.357]36ozQVwWih66+Gec78SJEg==[/tex] . 证明: 函数[tex=6.857x1.357]k3zDLA8gwM4w0ZRZurYyVZoejW0f7L4Ik8P9Srw3I/w=[/tex]在区间 [tex=2.571x1.357]sjdPs/hhXAmvACj9h5RVRw==[/tex]内连续.
- 1
若一元函数 [tex=2.071x1.357]eAvaTAXWWX5VwHAZCgurVQ==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续,令[tex=20.071x1.357]/rwdubLtLJNPC5bDZKMdplZs6vKwGLqlMxuvniBK++f00TF27V2iNVo2wLH9ZogrgP5pGzIyNj6RNMO0P9SOSfJJ9ec7N9tSZ9wao0B+mG4=[/tex]试讨论 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 在 [tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex] 上是否连续? 是否一致连续?
- 2
函数[tex=3.714x1.286]ILxTGSNsFVqbb4UrB1q2og==[/tex]在点[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]处连续,试问函数[tex=3.714x1.286]ILxTGSNsFVqbb4UrB1q2og==[/tex]在点[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]处是否可微,为什么?
- 3
如一元函数 [tex=3.429x1.286]P3riAXwlulFoWGjfhH4DocgnHk+JNNDrwpr3qD1dehc=[/tex] 在点 [tex=0.929x1.286]pid4xDoxL+xaac7h3yRpsQ==[/tex] 连续, [tex=3.357x1.286]uzRvwzelySXa8Arr/LWDbayCezgZ1C/f6VUKt53TL/0=[/tex] 在点 [tex=1.0x1.286]5PBm7Rex1+3Bx6Y1vbx1pg==[/tex] 连续, 那么二元函数 [tex=2.857x1.286]tj1rvgP4AHIdbrLux0kAEQ==[/tex] 在点 [tex=3.071x1.286]cSjGHqCnItShrO6H41ZST8s5v6AHO0ktGOR16s+kL4s=[/tex] 是否连续?
- 4
考虑二元函数 [tex=2.643x1.357]g1Wo3ALRzTk0js5m9GO2sA==[/tex]的下面 4 条性质:(1) 函数[tex=2.643x1.357]g1Wo3ALRzTk0js5m9GO2sA==[/tex]在点[tex=2.857x1.357]EZ1YLh+FMEcQAjNnWDBjTOIsNztTlNE8eiBgVShrvuw=[/tex]处连续 ;(2) 函数 [tex=2.643x1.357]g1Wo3ALRzTk0js5m9GO2sA==[/tex]在点 [tex=2.857x1.357]EZ1YLh+FMEcQAjNnWDBjTOIsNztTlNE8eiBgVShrvuw=[/tex]处两个偏导数连续 ;(3) 函数 [tex=2.643x1.357]g1Wo3ALRzTk0js5m9GO2sA==[/tex]在点[tex=2.857x1.357]EZ1YLh+FMEcQAjNnWDBjTOIsNztTlNE8eiBgVShrvuw=[/tex]处可微(4) 函数 [tex=2.643x1.357]g1Wo3ALRzTk0js5m9GO2sA==[/tex] 在点 [tex=2.857x1.357]EZ1YLh+FMEcQAjNnWDBjTOIsNztTlNE8eiBgVShrvuw=[/tex]处两个偏导数存在.则下面结论正确的是 未知类型:{'options': ['[tex=7.0x1.357]LI/A6g83qMWkspQoIAxg235oMvxzT+olJO0vBJtaNVR6AeEc+bTbt8K1FaN91+ii[/tex]', '[tex=7.0x1.357]2msp+hqepc3OQyJW39s3znrPQd2cQyONz0sQpidnkm5CLqdI1zJf0rQvDLR4w8ya[/tex]', '[tex=7.0x1.357]2msp+hqepc3OQyJW39s3zsRXAYoUByh3gckcm3YOTCoRoRyvvTWqy8GXrRUSDL3H[/tex]', '[tex=7.0x1.357]2msp+hqepc3OQyJW39s3zib0s5Zt3aK71zIoZbNqO3oywpSFgiM5nrGM6ykqZb3e[/tex]'], 'type': 102}