设f(x)在[a,b]上连续,则f(x)在[a,b]上的平均值是( )
A: f(a)+f(b)2
B: ∫baf(x)dx
C: 12∫baf(x)dx
D: 1b-a∫baf(x)dx
A: f(a)+f(b)2
B: ∫baf(x)dx
C: 12∫baf(x)dx
D: 1b-a∫baf(x)dx
D
举一反三
- 设f(X)及g(X)在[a,b]上连续(a<b),证明:(1)若在[a,b]上f(x)>=0,且∫f(x)dx=0,则在[a,b]上f(x)恒等于0(2)若在[a,b]上f(x)>=g(x),且∫f(x)dx=∫g(x)dx,则在[a,b]上f(x)恒等于g(x)
- 设f为[a,b]上的非负可积函数,在x0∈[a,b]连续且f(x0)>0,证明:∫baf(x)dx>0.
- 设f(x)在[a,b]上连续,且f(x)不恒等于零,证明∫(a,b)[f(x)]²dx>0
- 设函数f(x)在对称区间【-a,a】上连续,证明∫(-a,a)f(x)dx=∫(0,a)[f(x)+f(-x)]dx
- 设f(x),g(x)在区间[a,b]上连续,且g(x) A: π∫ab[2m-f(x)+g(x)][f(x)-g(x)]dx B: π∫ab[2m-f(x)-g(x)][f(x)-g(x)]dx C: π∫ab[m-f(x)+g(x)][f(x)-g(x)]dx D: π∫ab[m-f(x)-g(x)][f(x)-g(x)]dx
内容
- 0
设函数f(x)在(-∞,+∞)上连续,则d∫f(x)dx等于______. A: f(x) B: f(x)dx C: f(x)+C D: f’(x)dx
- 1
下列命题 ①设∫f(x)dx=F(x)+C,则对任意函数g(x),有∫f[g(x)]dx=F[g(x)]+C ②设函数f(x)在某区间上连续、可导,且f’(x)≠0.又f-1(x)是其反函数,且∫f(x)dx=F(x)+C,则 ∫f-1(x)dx=xf-1(x)-F[f-1(x)]+C ③设∫f(x)dx=F(x)+C,x∈(-∞,+∞),常数a≠0,则∫f(ax)dx=F(ax)+C. ④设∫f(x)dx=F(x)+C,x∈(-∞,+∞),则 中正确的是 A: ①、③. B: ①、④. C: ②、③. D: ②、④.
- 2
设∫xf(x)dx=arcsinx+C<sub>1</sub>,则∫[1/f(x)]dx=____。
- 3
若\(F'(x)=f(x)\),则 \([\int{F'(x)dx}]'=f(x) \)
- 4
设函数f(x)在[a,b]上连续,且在(a,b)内有f′(x)>0,证明:在(a,b)内存在唯一的一点ξ,使得(ξ-a)f(ξ)-∫ξaf(x)dx=3∫bξf(x)dx-3(b-ξ)f(ξ).