举一反三
- 有一泵循环管道,各支管阀门全开时,支管流量分别为[tex=2.786x1.214]GiJOHmEph/cRBwLJnkrQjNCYylXqwA+kLQaMtHbmwn8=[/tex],若将阀门A开度变小,其他条件不变,试论证主管流量Q怎样变化,支管流量[tex=2.786x1.214]GiJOHmEph/cRBwLJnkrQjNCYylXqwA+kLQaMtHbmwn8=[/tex]怎样变化。 [img=637x401]17ab87a2c0bce3a.png[/img]
- 有一泵循环管道,各支管阀门全开时,支管流量分别为[tex=2.786x1.214]2r8JTKslOWFV+o24c3kxH/sQn1tnapSrHIOr7W3JJRg=[/tex], 若将阀门[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 开度关小,其它条件不变,试论证主管流量[tex=0.857x1.214]yf2WhC6dow23mEHpBHcQLQ==[/tex] 怎样变化, 支管流量[tex=2.786x1.214]2r8JTKslOWFV+o24c3kxH/sQn1tnapSrHIOr7W3JJRg=[/tex]怎样变化。[img=273x214]17ad293ed42efcd.png[/img]
- [img=263x130]179a87a22db1765.png[/img]对如图所示的分支管路系统,试分析当支管1上的阀门[tex=0.929x1.214]aFz6NHZj9hE0vyGg3C9zyw==[/tex]关小后,总管流量和支管1、2内的流量及压力表读数[tex=1.071x1.0]qVvYOkjImcZaFsHzWEWr6g==[/tex]如何变化。
- 由非空集合X的所有子集构成的集合称为X的幂集,记作[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex].(1)设X={a,b,c},求[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex].(2)设X是由n个元素组成的有限集,证明[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex]中含有[tex=1.0x1.0]j//x0/Z+ltpf5R8ThFOpMA==[/tex]个元素.
- 有容量分别为[tex=3.286x1.286]pCZ+fPe3X5XtlIcXCf6RGw==[/tex]和[tex=3.286x1.286]JjWMjbwalVPPThZBywJsLQ==[/tex]的独立随机样本得到下述观测结果, (X、 Y为观测值, f为频数)X 12.3 12.5 12.8 13.0 13.5 Y 12.2 12.3 13.0f 1 2 4 2 1 f 6 8 2现已知变量X、Y的总体均呈正态分布。请问在0.05的显著性水平下,可否认为这两个总体属同一分布?[tex=24.786x1.286]OVWwFMgiPzBDnRSqBYypUv4puOxaqZVbzeGoYhEt/ZwiQxP0kGgAAWuaJInyBhH09xLkSWqB6n3qd1WXaKpfvwUNfmmVSMJTzi4wz4IT6q4=[/tex][tex=8.429x1.286]AcUD6cTXhAghaQMem3GRbFMfFVpZHcyA3tP0z+S7RAk=[/tex] [tex=13.357x1.357]ZPe8nXNlBeMmW2cEA+D6DaqP/loFbcVH2QukDH1SMofLM6E74nDyl0WrH8imm/Ai[/tex]
内容
- 0
设h为X上函数,证明下列两个条件等价,(1)h为一单射(2)对任意X上的函数[tex=5.429x1.214]3BrfPgAFe5dbHQTMAYnbS+118W4YAj6CiW06EKMaxNI=[/tex]蕴涵[tex=1.786x1.214]pxzkG5OdsKT9CiCwC5OvPQ==[/tex]
- 1
求函数[tex=3.286x1.429]kdT+eIE7CHPynuN6CaN40g==[/tex](抛物线)隐函数的导数[tex=1.071x1.429]BUw1BPFU3fsJlAl/vt9M9w==[/tex]当x=2与y=4及当x=2与y=0时,[tex=0.786x1.357]Hq6bf3CacUy07X+VImUMaA==[/tex]等于什么?
- 2
在长为[tex=1.0x1.0]mkTajOa+7PPnbjjou/+HYw==[/tex], 直径为[tex=0.571x1.0]QDHYLzpRIwhOrWBqGonCgg==[/tex]的管道上, 并联一根直径相同,长为[tex=0.5x1.0]3EF1VcotinZAjtQqtSWaxw==[/tex] 的支管, 若水头[tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex]不变, 不计局部损失,试求并联支管前后的流量比。[img=363x163]17ad2805213e283.png[/img]
- 3
若:(1)函数 f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数;(2)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]有导数;(3)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数及函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数,则函数[tex=5.643x1.357]GmtX7Vop79exGU/rpqXUYw==[/tex]在已知点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]的可微性怎样?
- 4
设计一个能对两个二进制数 [tex=7.5x1.214]qTqeSAxTjrUwfAYKj8hpF3ySU+Pup8tIfWfJfAsrXHGxvCBfkdKtRZyPYQqMvWm/[/tex] 和[tex=7.0x1.214]0i+5n5kP0TErW53BKzzq6V2jf6TVaH8S6EGaTgwjwxRmhTM4EuUU7obSfXd34mrP[/tex]进行比较的同步时序电路, 其中, X 、 Y串行的输入到 电路 x 、 y输入端。比较从 [tex=0.929x1.0]wVICVfwx/+W8A4DO0okxuw==[/tex] 、[tex=0.857x1.0]r8PVUfTVe9go7IJ3Svh2Fw==[/tex] 开始, 依次进行到[tex=1.0x1.0]q9UUhdoW/JH6j/ftY+hOmg==[/tex]、[tex=0.929x1.0]gbnBR4PdIkGSunlJj42PhA==[/tex] 。电 路有两个输出[tex=1.143x1.214]PDYJ7+YhY5TZwQc8wLO/ZQ==[/tex]和 [tex=1.071x1.286]thm8AX7dIh0+fBz67wWaXg==[/tex], 若比较结果 X>Y, 则为 [tex=1.5x1.214]jpD+haPonypMwyEhTGg4/w==[/tex], [tex=1.071x1.286]eVv1SxUCdIMjLjLT2Ncrrw==[/tex] 为 0 ; 若比 较结果 X<Y, 则 [tex=1.143x1.214]PDYJ7+YhY5TZwQc8wLO/ZQ==[/tex]为 0,[tex=1.071x1.286]eVv1SxUCdIMjLjLT2Ncrrw==[/tex] 为 1 ; 若比较结果 X=Y, 则 [tex=1.143x1.214]PDYJ7+YhY5TZwQc8wLO/ZQ==[/tex] 和[tex=1.071x1.286]eVv1SxUCdIMjLjLT2Ncrrw==[/tex] 都为 1 。 要求用尽可能少的状态数作出状态图和状态表, 并用尽可能少的逻辑门和触发器(采用 J - K 触发器 ) 实现其功能。