A: FindMinimum[Cos[x]+x+y+4,{x,4},{y,4}]
B: FindMinimum[Cos[x]+x+y+4,{x},{y}]
C: FindMinimum[Cos[x]+x+y+4]
D: FindMinimum[Cos[x]+x+y+4;{x,4},{y,4}]
举一反三
- 求微分方程[img=143x21]17da5f14490e50e.png[/img]的通解,实验命令为(). A: dsolve(D2y-2*Dy+5*y=sin(2*x),x)ans =exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/17*sin(2*x)+4/17*cos(2*x) B: dsolve('D2y-2*Dy+5*y=sin(2*x)','x')ans =cos(2*x)*(sin(4*x)/17 - cos(4*x)/68 + 1/4) - sin(2*x)*(cos(4*x)/17 + sin(4*x)/68) + C1*cos(2*x)*exp(x) - C2*sin(2*x)*exp(x) C: dsolve(D2y-2*Dy+5*y=sin(2*x),'x','y')ans =exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/17*sin(2*x)+4/17*cos(2*x)
- 【单选题】求函数y=sin(xy)+x/5的极小值,初始点为(1,1)的命令为( )。 A. FindMinimum[Sin[x*y]+x/5,{x,1},{y,1}] B. FindMinimum[sin[xy]+x/5,{x,1},{y,1}] C. FindMaximum[Sin[x*y]+x/5,{x,1},{y,1}] D. Findminimum[Sin[x*y]+x/5,
- 已知\( y = {x^3}\cos 2x \),则\( y'' \)为( ). A: 0 B: \( 6x\cos 2x{\rm{ + }}12{x^2}\sin 2x - 4{x^3}\cos 2x \) C: \( 6x\cos 2x - 12{x^2}\sin 2x{\rm{ + }}4{x^3}\cos 2x \) D: \( 6x\cos 2x - 12{x^2}\sin 2x - 4{x^3}\cos 2x \)
- 【单选题】化简 sin( x + y )sin( x - y ) + cos( x + y )cos( x - y ) 的结果是 A. sin 2 x B. cos 2 y C. - cos 2 x D. -cos 2 y
- 假设x=4,y=5,下列哪个逻辑表达式是真的? A: !(x==4)^y!=5 B: x!=4^y==5 C: x==5^y==4 D: x!=5^y!=4
内容
- 0
设(),求y的4阶导数错误的命令是()A.()syms()f(x)()f(x)=exp(x)*cos(x)()diff(f,4)()B.()syms()f(x)()f(x)=exp(x)*cos(x)()diff(f,x,4)()C.()syms()f(x)()f(x)=exp(x)*cos(x)()diff(f,4,x)()D.()syms()f(x)()f(x)=exp(x)*cos(x)()diff(f,x)
- 1
如下C程序的输出是什么?#include [stdio.h]void Func1 (int x, int y);void Func2 (int *x, int *y); int main() { int x = 3; int y = 4;Func1 (x, y); printf ("x = %d, y = %d\n", x, y);Func2(&x, &y); printf ("x = %d, y = %d\n", x, y);} void Func1 (int x, int y) { x = x + y; y = x - y; x = x - y; printf ("x = %d, y = %d\n", x, y);} void Func2 (int *x, int *y) { *x = *x + *y; *y = *x - *y; *x = *x - *y;;} A: x = 3, y = 4x = 3, y = 4x = 3, y = 4 B: x = 4, y = 3x = 4, y = 3x = 4, y = 3 C: x = 3, y = 4x = 3, y = 4x = 4, y = 3 D: x = 4, y = 3x = 3, y = 4x = 4, y = 3
- 2
已知int x=3,y=4;,写出下列表达式的值 (1) (x,y) (2) x>y?x:y (3) x?y:x (4) (x>y)?(y>=2)?1:2:(y>x)?x:y
- 3
已知\( y = {x^{\cos x}} \) ,则\( y' = \left( { - \sin x\ln x + { { \cos x} \over x}} \right){x^{\cos x}} \)( ).
- 4
x=9,y=4,x%y=______ ,x//y=______