题目24. 设线性空间\(V\)的线性变换\(\sigma\)满足\(\sigma^2=\sigma\),则称\(\sigma\)为投影(projection)。以下说法错误的是:
A: \(V\)中向量\(\beta\in Im\sigma\)当且仅当
\(\sigma\beta=\beta\)
B: \(V=Im\sigma+ker\sigma\)
C: \(Im\sigma\cap ker\sigma\neq\{0\}\)
D: \(V=Im\sigma\oplus ker\sigma\)
A: \(V\)中向量\(\beta\in Im\sigma\)当且仅当
\(\sigma\beta=\beta\)
B: \(V=Im\sigma+ker\sigma\)
C: \(Im\sigma\cap ker\sigma\neq\{0\}\)
D: \(V=Im\sigma\oplus ker\sigma\)
举一反三
- 设\(\alpha \) 与\(\beta \)为常数,则\(\int\!\!\!\int\limits_D {[\alpha f(x,y) + \beta g(x,y)]d\sigma = \alpha \int\!\!\!\int\limits_D {f(x,y)d\sigma + \beta \int\!\!\!\int\limits_D {g(x,y)d\sigma } } } \)
- (单选题)真空中两块互相平行的无限大均匀带电平面。其电荷面密度分别为\(+\sigma\)和\(+2\sigma\),两板之间的距离为\(d\)。两板之间的电场强度的大小和电势差分别为 A: \(\Large{\frac{\sigma}{2\varepsilon _0}}\),\(\Large{\frac{\sigma}{2\varepsilon _0}}\)\(d\)。 B: \(0\),\(0\)。 C: \(\Large{\frac{3\sigma}{2\varepsilon _0}}\),\(\Large{\frac{3\sigma}{2\varepsilon _0}}\)\(d\)。 D: \(\Large{\frac{\sigma}{\varepsilon _0}}\),\(\Large{\frac{\sigma}{\varepsilon _0}}\)\(d\)。
- 考虑直流电平(DC)观测模型${z_n} = A + {w_n}$,$n = 0,1, \cdots ,N - 1$,${w_n},n = 0,1, \cdots ,N - 1$为零均值、方差为${\sigma ^2}$的高斯白噪声(${\sigma ^2}$已知),则参数$A$的克拉美-罗下界为: A: $\frac{{2{\sigma ^2}}}{N}$ B: $\frac{{{\sigma ^2}}}{{N - 1}}$ C: $\frac{{{\sigma ^2}}}{N}$ D: $\frac{{2{\sigma ^4}}}{N}$
- 在试验次数为$N$的二水平完全因析试验中,假设对每次试验的观测是独立的,且服从方差为$\sigma^2$的正态分布,则二阶因子交互效应的方差为 A: $\sigma^2$ B: $\frac{1}{N}\sigma^2$ C: $\frac{2}{N}\sigma^2$ D: $\frac{4}{N}\sigma^2$
- 题目包含多个选项,但学生只能选择一个答案。1、设随机变量X服从均值为0,方差为$\sigma^2$的正态分布,则X的三阶原点矩为? A: $\sigma^2$ B: 0 C: $3\sigma^4$ D: 1