因式分解8x²y﹣8xy²+2y³:选择正确答案()
A: 2x(2x-y)²
B: 2y(2x-y)²
C: 2y(x-y)²
D: -y(2x-y)²
A: 2x(2x-y)²
B: 2y(2x-y)²
C: 2y(x-y)²
D: -y(2x-y)²
举一反三
- 设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial y}}=\)( )。 A: \({e^{xy}}({x}y^2 + {x^3} + 2y)\) B: \({e^{xy}}({x^2}y + {x^3} + 2y)\) C: \({e^{xy}}({x}y^2 + {x^3} + 2x)\) D: \({e^{xy}}({x}y+ {x^3} + 2y)\)
- 分解因式()x()3()y()-()2()x()2()y()2()+()xy()3()正确的是A.()xy()(()x()+()y())()2()B.()xy()(()x()2()﹣()2()xy()+()y()2())()C.()xy()(()x()2()+2()xy()﹣()y()2())()D.()xy()(()x()﹣()y())()2
- 下列函数在点$(0,0)$的重极限存在的是 A: $f(x,y)=\frac{y^2}{x^2+y^2}$ B: $f(x,y)=(x+y)\sin\frac{1}{x}\sin\frac{1}{y}$ C: $f(x,y)=\frac{x^2y^2}{x^2y^2+(x-y)^2}$ D: $f(x,y)=\frac{x^2y^2}{x^3+y^3}$
- 方程\((x + 2y){\rm{d}}x - x{\rm{d}}y = 0\)的通解是( )。 A: \(y = {x^2} - x\) B: \(y = C{x^2} - x\) C: \(y = C{x^2} +x\) D: \(y = {x^2} +x\)
- 下列各微分方程中属于二阶方程的是(). A: (2x-y²)dx+(x²+y)dy=0 B: x(y′)³-2y′′=0 C: x³y′′′-2y′′-y=0 D: x²(y′)³-2y′=0