若在有界闭区域D上,\( f\left( {x,y} \right) \equiv 1 \),\( \sigma \)为D的面积,则\( \int\!\!\!\int\limits_D {f\left( {x,y} \right)d\sigma } \)=( )
A: 0
B: 1
C: 不存在
D: \( \sigma \)
A: 0
B: 1
C: 不存在
D: \( \sigma \)
举一反三
- 设\(D = \left\{ {(x,y)\left| { { x^2} + {y^2} \le 9,x \ge 0,y \ge 0} \right.} \right\}\),则\(\int\!\!\!\int\limits_D {(x + 3y)} d\sigma = \)______
- 设\(D\)是由\( - 1 \le x \le 1 \) ,\( 0 \le y \le 2 \) 所围区域,则\( \int\!\!\!\int\limits_D {\left| {y - {x^2}} \right|} d\sigma \) = \( { { 45} \over {16}} \) 。
- 设\(\alpha \) 与\(\beta \)为常数,则\(\int\!\!\!\int\limits_D {[\alpha f(x,y) + \beta g(x,y)]d\sigma = \alpha \int\!\!\!\int\limits_D {f(x,y)d\sigma + \beta \int\!\!\!\int\limits_D {g(x,y)d\sigma } } } \)
- 如果在D上,\(f(x,y) \le g(x,y)\)那么\(\int\!\!\!\int\limits_D {f(x,y)d\sigma } \ge \int\!\!\!\int\limits_D {g(x,y)d\sigma } \)
- 设D是由\( 0 \le x \le 1 \) ,\( 0 \le y \le 1 \) 所围区域,则\( \int\!\!\!\int\limits_D {\left| { { x^2} + {y^2} - 1} \right|} d\sigma \) = \( {\pi \over 4} - {1 \over 2} \) 。