• 2022-06-15
    假定[tex=0.786x1.286]idFowbYy18dnAiDpSURrJA==[/tex]是曲面[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]上的保长变换构成的变换群,并且保持曲面[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]上的一条[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]不变. 证明:如果[tex=0.857x1.0]LLLZ1Q76g93wjpcfDoZmPg==[/tex]限制在[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]上的作用是传递的,则曲线 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]的测地曲率必为常数.
  • [tex=1.714x1.0]dPOLBCSnQ26DsjSHcZ/uTA==[/tex]\保持[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]上[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]不 变 [tex=0.714x1.0]eRYm2Q+HsFf7uSV44obw7A==[/tex]对[tex=5.643x1.214]+IrIcnizTwpJ+uDaOLgXJ2T6oG71OccdMiG36qOvBLoZAi58t+UjD6Hce2fYwMJD[/tex], 有[tex=3.5x1.357]X9uYinqZKa2An549zd/CfHuVDsdIr+FBMKq1kPa0UuI=[/tex][tex=8.214x1.214]EEt3x5rxbPdnG1vr2EnYYiVKN/HPRYAZCfbTVu642QoaQK2a5eZGUg/2X4K/h8Ncw81gZ5cIXwM7NxTP4Gg0MA==[/tex], 设[tex=19.429x1.357]+q5CDL2jKoKc2w0dLnuHwUkNjv+eCRijIC5IpyJVObHwAZ7EMnBXkgVRTiuS6oH5hnLTBfowGeHK6NH82DL3YGKzyNedQFW/x8w/44HqIgz1Gd2eMVrn8vcbW5Tk1dq+BoD65n9oAyIKDUXLMyDsmQ==[/tex]由于[tex=0.643x1.214]8DTH3sw5gs69UjLMpmVJ0g==[/tex]在[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]上的作用是传递的,故[tex=2.643x1.214]tDi+2qFwY0ASlIRXTIqDVuGC3U0HCfvzwC7yOhbeSsk=[/tex], 使得[tex=3.643x1.357]nX8BjBJev+BjAe/5ly0UWA==[/tex]又因[tex=0.714x1.214]hEHZwhVlHPnf9D4udzi0EA==[/tex]为保长变换,故 [tex=3.214x1.357]p6vLRBlXTPbVDnk4/y8lA7yfZJ/YAVbeTYe5GEjWTYI=[/tex]由[tex=1.714x1.214]Se7Z7OxYfA0Y1oKcIdKVGg==[/tex]的任意性知, [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]上的测地曲率[tex=4.0x1.286]fI+Y/mYehR8QPTaftSlFxw==[/tex].

    举一反三

    内容

    • 0

      若[tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex] 在周线 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 内部除有一个一阶级点外解析,且连续到 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex],在 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 上 [tex=4.714x1.357]TmcsBXzsCVLNElUdaha8WH7fTrtrO9XaTLzNCp3k4xU=[/tex]证明[tex=7.786x1.357]ydNC3EcZ+5ATq34rwwixhCP9QszFjZKwPO53sJ4s3UI=[/tex]在 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]内部恰好有一个根.

    • 1

       如果函数 [tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex] 在简单闭曲线 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 及其内部解析且在 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 上有 [tex=3.357x1.357]NgmJJpzN2HvpxzS47JUJGA==[/tex] 证明在 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 内部 [tex=3.357x1.357]NgmJJpzN2HvpxzS47JUJGA==[/tex]

    • 2

      如果 [tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex] 在简单闭曲线[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 及其内部 [tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex]除 [tex=0.857x1.0]KInWOYOIU+u9wjpJut/pOQ==[/tex] 外解析,且在[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 上不取零值[tex=1.214x1.357]GIIyq7WJoOqFiAgnBupoRaYY7fka+qWSfOUOCnn84l8=[/tex] 不在[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 上), [tex=0.857x1.0]KInWOYOIU+u9wjpJut/pOQ==[/tex] 是 [tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex] 的 [tex=3.857x1.357]2APCsnDNRYUB1OKsYhbLVs2fo2LLTBRUO9XYIsXciT4=[/tex]级极点, 试求 [tex=5.429x2.714]FE2emU4+moBspjp3OOFOx/xa3lBP+u5GkyZaAJSg0fGpl1i0cuZWZ48UEEJQcVEH5vsFlulUbWYq77697SylAg==[/tex]的值.

    • 3

      令[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]是数域[tex=0.643x1.0]J+LW/0i6Fe+lWEmBUgT8zg==[/tex]上向量空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的一些线性变换所成的集合.[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的一个子空间[tex=1.0x1.0]0e+76hgEqXhGRszRQWFSzQ==[/tex]如果在[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]中每一线性变换之下不变,那么就说[tex=1.0x1.0]0e+76hgEqXhGRszRQWFSzQ==[/tex]是[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]的一个不变子空间.如果[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]在[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]中没有非平凡的不变子空间,则是不可约的,设[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]不可约,而[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]是[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的一个线性变换,它与[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]中每一线性变换可交换.证明[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]或者是零变换,或者是可逆变换.

    • 4

      令[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是数域[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上向量空间[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一些线性变换所成的集合。[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一个子空间[tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]如果在[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]中每一线性变换之下不变,那么就说 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]是[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]的一个不变子空间。说[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是不可约的,如果[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]在[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]中没有非平凡的不变子空间。设[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]不可约,而[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]是[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一个线性变换,它与[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]中每一线性变换可交换。证明,[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]或者是零变换,或者是可逆变换。 [ 提示 : 令 [tex=5.0x1.357]o2+7Gdi3IvIUF7x5ByZZytJ/TK5JsUQ7dq1ESJYAz0s=[/tex],证明[tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]是 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]的一个不变子空间。