设[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex]上可测,[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]是[tex=1.286x1.286]FXVRN1xB7vaj5ClCNqxQ6rij3XPJkzrWPYjpkz9GejE=[/tex]上的博雷尔集。试证[tex=3.143x1.286]h1WUAM0wrWedec2yVQg1uw==[/tex]可测集。若[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是[tex=1.286x1.286]FXVRN1xB7vaj5ClCNqxQ6rij3XPJkzrWPYjpkz9GejE=[/tex]上任意可测集,问[tex=3.071x1.286]ngArMETJ4jqXTWGnMO2kAQ==[/tex]是否必定可测?
举一反三
- 设[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex],[tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex]为[tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex]上可测函数,试证[tex=3.857x1.286]fwtyRTMjkw6JCEsl+YJeLQ==[/tex]是可测集。
- 设 [tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex], [tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex], [tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex] 是 [tex=1.286x1.286]ykUi2IkWF8o54322vzAczw==[/tex] 中的可测集, 若有 [tex=5.786x1.286]/A8R+hmKk2XtAhS5Gkl5x4njgMJ/cecQKuZhaJl/itE=[/tex], [tex=5.857x1.286]LqxSopkSBGvzwmviH4ELWnLACT7X+AImTg7q5F6VrZM=[/tex], 试证明 [tex=5.786x1.286]/A8R+hmKk2XtAhS5Gkl5x3fny4FmDFnV4cz6A7NnT30=[/tex].
- 设 3 阶矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值互不相同,若行列式[tex=3.071x1.286]FYCnFYQQa8C3I+O2sfSSGA==[/tex], 则[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的秩为 A: 0 B: 1 C: 2 D: 3
- 设 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 以及 [tex=2.286x1.286]oKMjFQIBIyJNQ0RLUyaTZw==[/tex] [tex=5.571x1.286]yrxqbq9Fo5LoBPgFKOwWKVEYoDBNNA4etAJlzTPGMkU=[/tex] 都是 [tex=3.143x1.286]vZHuSxeFKZ3mGFucvn17c5aU/UKTaDoTBApyM3c2ib8=[/tex] 上几乎处处有限的可测函数. 若对任给的 [tex=2.286x1.286]agbj3VZO5e3/0KnI5wCMSKLl3aP3w8IOLV//cMDwSdM=[/tex], 存在 [tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex] 的可测子集 [tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]: [tex=5.357x1.286]6Rp5AIqkaUhWdKgXSjiextlJ5/7HChUzXiz7syxWEig8R3WTYDabR7/691nUvRDC[/tex], 使得 [tex=2.286x1.286]oKMjFQIBIyJNQ0RLUyaTZw==[/tex] 在 [tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex] 上一致收敛于 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex], 试证明 [tex=2.286x1.286]oKMjFQIBIyJNQ0RLUyaTZw==[/tex] 在 [tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex] 上几乎处处收敛于 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] .
- 证明:(1) 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex] 为矩阵,则[tex=4.286x1.286]oheUYwhZ0URiNEpsN7L7kA==[/tex]有意义的充分必要条件是[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex] 为同阶矩阵。(2) 对任意 [tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex] , 都有[tex=6.286x1.286]f9BmKY0KXh740nvID3nNj0fFKPsoX9X3zKZONqYCrR0=[/tex], 其中[tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex]为单位矩阵。