如果f(x)是位似技术函数,并且x和[tex=0.857x1.143]22UTor2iW14oU27eYNocOg==[/tex]生产同样水平的产出,那么tx和t[tex=0.857x1.143]22UTor2iW14oU27eYNocOg==[/tex]也一定生产同样水平的产出。请证明这个结论。
举一反三
- 设[tex=0.857x1.143]22UTor2iW14oU27eYNocOg==[/tex]轴和[tex=0.786x1.357]Hq6bf3CacUy07X+VImUMaA==[/tex]轴在原直角坐标系中的方程分别为:[tex=12.571x1.214]c0LTaFCHrmNpCxD3kedLgRw3gxIZiHD1mmTLNq6crgg=[/tex],写出点的坐标变换公式;并且求点[tex=3.643x1.357]0oNBDg+GXZs+hydtG3CKjw==[/tex]的新坐标。设某椭圆的长轴和短轴分别在[tex=0.857x1.143]22UTor2iW14oU27eYNocOg==[/tex]轴和[tex=0.786x1.357]Hq6bf3CacUy07X+VImUMaA==[/tex]轴上,其长,短半轴的长分别为3,2,求这个椭圆在原坐标系中的方程。
- 若:(1)函数 f(x)在点[tex=0.929x1.0]cjoIbYuE/p4IqfLA8eA4ZA==[/tex]有导数,而函数g(x)在此点没有导数;(2)函数f(x)和g(x)二者在点[tex=0.929x1.0]cjoIbYuE/p4IqfLA8eA4ZA==[/tex]都没有导数,可否断定它们的和[tex=7.214x1.357]oX568MWmpJJk2c1dN8FEzQ==[/tex]在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数?
- 设抛物线[tex=7.5x1.429]PuOOiuXliw3SbXOlC3PxEg==[/tex]与x轴有两个交点x=a,x=b(a<b).函数f在[a,b]上二阶可导,f(a)=f(b)=0,并且曲线y=f(x)与[tex=7.5x1.429]PuOOiuXliw3SbXOlC3PxEg==[/tex]在(a,b)内有一个交点.证明:存在[tex=3.286x1.357]EV4pc+LBkNBOhd4NZUA5NQ==[/tex],使得[tex=4.357x1.429]/FYTUVhgTPYa3RqQR+bSSXpHSralD3pTYi2H35Z8qsw=[/tex].
- 设h为X上函数,证明下列两个条件等价,(1)h为一单射(2)对任意X上的函数[tex=5.429x1.214]3BrfPgAFe5dbHQTMAYnbS+118W4YAj6CiW06EKMaxNI=[/tex]蕴涵[tex=1.786x1.214]pxzkG5OdsKT9CiCwC5OvPQ==[/tex]
- 设h为X上的函数,证明下列两个条件等价。(1)h为一满射,(2)对任意X上的函数[tex=5.429x1.214]OREhy0bsXZWZ6y8PdI7nwHYlaKprN6KYnR/FCpmEbdk=[/tex]蕴涵[tex=1.786x1.214]pxzkG5OdsKT9CiCwC5OvPQ==[/tex]