• 2022-06-09
    如果f(x)是位似技术函数,并且x和[tex=0.857x1.143]22UTor2iW14oU27eYNocOg==[/tex]生产同样水平的产出,那么tx和t[tex=0.857x1.143]22UTor2iW14oU27eYNocOg==[/tex]也一定生产同样水平的产出。请证明这个结论。
  • 证明:首先阐述一下位似技术的定义:位似技术是一个一次齐次函数的单调变换。换句话说,函数f(x)是位似的,当且仅当它可以表示成f(x)=g(h(x)),其中h(·)是一次齐次的,g(·)是单调函数。由于x和[tex=0.857x1.143]22UTor2iW14oU27eYNocOg==[/tex]生产同样水平的产出,从而有g(h(x))=g(h([tex=0.857x1.143]22UTor2iW14oU27eYNocOg==[/tex])),又因为函数g(·)是单调的,所以必有h(x)=h(x'),于是:f(tx)= g(h(tx))= s(th(x))=(gth(tx'))= g(h(t[tex=0.857x1.143]22UTor2iW14oU27eYNocOg==[/tex]))= f(t[tex=0.857x1.143]22UTor2iW14oU27eYNocOg==[/tex])即tx和t[tex=0.857x1.143]22UTor2iW14oU27eYNocOg==[/tex]也一定生产同样水平的产出. 

    举一反三

    内容

    • 0

      若:(1)函数 f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数;(2)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]有导数;(3)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数及函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数,则函数[tex=5.643x1.357]GmtX7Vop79exGU/rpqXUYw==[/tex]在已知点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]的可微性怎样?

    • 1

      设[tex=5.214x1.214]l2vYijvwphpA0Bdo8olvNhKvOVd4RCELKut0jj6S5qs=[/tex]是连续映射,Y是Hausdorff空间,证明:(1)集合[tex=9.357x1.357]QCqopxinhs+TvVYgLw48vVpO4x/Rie4gzAlmw62rJGM=[/tex]是X的闭子集;(2)如果A是X的稠密子集且[tex=3.714x1.357]fo4X83uQk0aLKgSpBjpSMw8oj58YdJ5bCiu5d4gfWQqZvgjwV7CYEcyqXJHmRmoq[/tex],则f=g。

    • 2

      若:(1)函数 f(x)在点[tex=0.929x1.0]cjoIbYuE/p4IqfLA8eA4ZA==[/tex]有导数,而函数g(x)在此点没有导数;(2)在点[tex=0.929x1.0]cjoIbYuE/p4IqfLA8eA4ZA==[/tex]函数f(xr)和g(x)二者都没有导数,可否断定他们的积[tex=6.5x1.357]/gAVQ00H2rftxTI44M7tvg==[/tex]在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数?

    • 3

      某甲的效用函数为[tex=7.429x1.357]/H5u445kuYBH+5SQt0CL1P8CB2hEEOC1mrvGUIA5btw=[/tex],x、y是商品X、Y的消费量。X、Y的价格分别为[tex=1.286x1.214]fAqzCb4JfIb9dcRelloMyw==[/tex]和[tex=1.071x1.214]H/unJ0FK97BmBl+YVZimWA==[/tex]证明如果某甲两种商品都购买,那么其消费量[tex=2.286x1.357]31CzVDPWEEnJrSJJlGK6fQ==[/tex]满足[tex=8.214x1.357]Bs04DFyOaNf4jvtaHT9Nbs35SFrWHKY+AJirYNNlVcw=[/tex]

    • 4

      设函数f(x)在[tex=3.286x1.357]64m0xE4nFlaKGIakApV0PA==[/tex]上连续,且有f(0)=0及f'(x)单调增,证明:在[tex=3.5x1.357]vgrW1/jK/GZ1TOWaPFIQWA==[/tex]上函数[tex=5.071x2.429]KmCvFjqAEA9O51+9erVGP+KtDDqVtXZQWqxj1eiTO5k=[/tex]是单调增的。