求真空中电荷面密度为[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]的无限大均匀带电平面的场强。[br][/br]
举一反三
- 两无限大的平行平面均匀带电,电荷面密度都是 [tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex], 求空间各区域的电场分布.
- 有一电荷面密度为 [tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex] 的“无限大”均匀带电平面,若以该平面处为电势零点,试求带电平面周围空间的电势分布。
- 两个无限大的平行平面都均匀带电,电荷的面密度分别为[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]和[tex=1.357x1.071]CD2+vJioMzi+roZykgxtvw==[/tex],试求空间各处电场强度。
- 如图所示,有一半径为[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的均匀带电圆环,总电荷为[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex],利用例[tex=1.786x1.143]y3zzR25LwhLA8e0QlP5zOw==[/tex]所得结果。若是均匀带电的圆盘(半径为[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex],电荷面密度为[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]) ,你能否利用例[tex=1.786x1.143]PyGTfIzO0glsBb2BFlSVrA==[/tex]的结论提出计算此圆盘轴线上离盘心[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]处的场强的方法?[br][/br][img=318x189]17e4ca0293cf92b.png[/img]
- 真空中一个半径为 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的均匀带电圆盘, 电荷面密度为 [tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex] 。求[tex=1.357x1.357]TWUgLpDrEXIKICMuiEQPjw==[/tex]在圆盘的轴线上距盘心 [tex=0.786x1.0]5SeCOJOzMwSNbX8MGx2Qsg==[/tex] 为[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]处的电势;[tex=1.214x1.357]vzdGmXlbw83hTiK2SebvEA==[/tex]根据场强与电势的梯度关系求出该点处的场强。